本帖最后由 GJM 于 2009-12-5 21:43 编辑
' n; j3 s9 k/ a* a
. g9 s5 V% j7 N6 L( p底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
; w" Y0 m3 N0 B: o6 j8 i
6 w8 D' q. f2 x% {不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
1 l5 f; T- p2 ]2 p6 {0 B4 M& _- S& C2 l! o+ x& a* G0 p
--------------------------------------------% a/ ]6 B9 D: m7 Y0 w
begin P_something arriving
- Q6 K7 i8 C1 D. { move into Q_wait9 q2 Y/ ^$ w8 P" G7 B& G% d$ P
move into nextof(Q_mA,Q_mB,Q_mC)! U- k. z) \ ^
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min( w$ N# r( ~; X# w
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean): e. @5 @ o5 j
send to die
0 x+ [" F8 i, e" send( m6 y# z& v' n# F: y
* o, c5 w& A6 U' {) t6 cbegin P_mA_down arriving6 }( @6 B; B/ U5 W
while 1=1 do
& s2 ]# i" P$ ^4 C, O8 h/ y' H begin3 W# M% \4 g5 h& s5 n" i) f
wait for e 110 min
4 K& s7 J5 Y/ o" X5 E. \ take down R_mA0 j; m J8 `# K' k! d6 C& f
wait for e 5 min
( q" U6 l) [) J bring up R_mA" Y( N+ j" O- t2 x
end% w# U. @8 f: g, a; S
end
; q- E8 o) a# N+ l # s0 Z: a. u* `. m: R
begin P_mB_down arriving
! v5 |4 }+ o8 y" G W7 {& a3 j3 d while 1=1 do
0 K7 s' @" X. M$ ~5 ` begin6 E; {7 f% N, s& ?/ N6 h
wait for e 170 min
0 }) j% C6 Z2 i) f2 L/ ?& z0 a- F4 ]3 m take down R_mB3 D" |" w7 G) l$ X) V7 p
wait for e 10 min' M1 J4 V2 i9 W( U6 u6 O5 ]
bring up R_mB
: M! Q7 Z( M4 k5 o& _ end
. y: @# d! K: w& o7 `3 Mend$ T0 J6 g6 c7 ?+ A' H( Z3 ^
' I u+ I. k3 f% o
begin P_mC_down arriving/ s4 N5 N( G/ W' D: O$ B& }% x
while 1=1 do % H- @& w7 R6 i; r8 S2 A
begin/ p- M9 D9 _( L$ U
wait for e 230 min2 V6 z3 F1 f" E1 O
take down R_mC% {& J5 [, f$ H3 P3 |
wait for e 10 min
G# |$ J# \" \ bring up R_mC3 z7 I" k, [, T* |1 |- U4 A' q
end
; Y7 H! Q' L" ~' fend" x$ c E# Z# i6 l/ b5 \; J, c
8 M P* \8 H$ ~' U" u& w4 r
begin P_mA_clean arriving8 q. F; G9 I5 x1 k1 } E
while 1=1 do \! f: a0 U+ W5 W
begin
3 g2 P: g. E: w! x' e& F wait for 90 min! n9 T# e Z4 B/ p" o' ], L
take down R_mA1 D. F' t* d# R5 D
wait for 5 min W; Z6 V% F( T7 T& Y
bring up R_mA
0 p9 d* ]+ }8 X7 a end. e% J& H; S3 j3 F) r4 C
end
% I7 i9 W0 J* V$ `" X3 a0 @ 2 b b+ D# e. S# b: Z
begin P_mB_clean arriving" v* V5 l$ C1 ]3 K+ k8 Z' [/ C' a, l
while 1=1 do; o+ ?4 C, z- A& D- x/ _4 B1 F( d( [
begin! ^2 Y# g. X" l/ I1 }" P
wait for 90 min' }: c5 u5 |3 I6 q6 C" ?0 d
take down R_mB$ q& E8 B: U; V9 N
wait for 5 min6 s5 t" Y" X7 H& L
bring up R_mB
+ t+ ]( u& H8 |9 z" m end
& P4 t& _& Y1 e) C/ }- f' lend( x7 ]* @0 q% Q4 {1 `% p$ l9 P1 L
/ J/ O7 V3 z% X N+ {$ M* r# E0 Pbegin P_mC_clean arriving
+ E! t' U/ `7 j8 m while 1=1 do
% O$ x( y/ O1 [0 i) R% i% h begin
2 {! E& H! O/ ?. n L5 G0 E wait for 90 min
& i3 e! a; z1 ~: N9 @ take down R_mC
9 r& n& h- N9 |- w wait for 10 min
9 \; `6 ]; M$ y7 f+ t! v. V bring up R_mC; i, B+ {& v# ~! m! ?% ^; h
end8 ~' C' m8 p6 \9 Y6 }% z
end6 E( j8 t) b& |# o$ `* N0 b4 o
----------------------------------------2 K0 k+ \3 C8 x9 ?% W3 w
# W- \- _4 r: p' ^2 |Exercise 5.9
. n' i, J' U, A& [+ Z+ e& i9 d/ N- T" n+ B; `. t. l$ v
5 E9 i1 q+ X6 j1 ^6 }$ M9 }
Create a new model to simulate the following system:5 `/ k# s8 Q: h
Loads are created with an interarrival time that is exponentially
" G4 g0 K: |% f( v$ Edistributed with a mean of 20 minutes. Loads wait in an infinite-" m9 j, b4 T1 [- c1 B( n9 H
capacity queue to be processed by one of three single-capacity, 8 f2 j) m& s* Q& F4 _4 g& P0 n
arrayed machines. Each machine has its own single-capacity queue & R5 B, Q9 {8 V' g$ l* g
where loads are processed. Waiting loads move into one of the three
) ?0 s$ j9 b: k m4 K7 uqueues in round-robin order. Each machine has a normally 0 z, }6 v+ H/ l/ r
distributed processing time with a mean of 48 minutes and a standard
( K0 j$ B: G$ W: y6 ]) Edeviation of 5 minutes.4 z+ H3 \# I' m q8 b
The three machines were purchased at different times and have
% Q% p* W5 i8 M2 pdifferent failure rates. The failure and repair times are exponentially - [# e X0 q1 s% Z/ U% p, |
distributed with means as shown in the following table: + M8 P2 q( _& h
Note The solution for this assignment is required to complete
I2 A1 w& f" |0 d9 T0 ~0 q4 [exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
$ M8 r. @6 k* ~- m5 H8 k: {your model.
; g A8 X& T0 R" g/ b& S8 _! B! F
* y$ D m+ i3 q1 K+ N% j6 _MachineMean time to failMean time to repair0 M7 q/ [0 N+ K1 b
A110 minutes 5 minutes$ K3 i9 ]7 g# Q" P! y/ S+ q
B 170 minutes 10 minutes
9 z: }0 B' H% O2 ^% U" y/ E( fC230 minutes 10 minutes
5 x+ d3 T$ j- t& f1 w/ Q: S- `9 n5 j" L J& x4 W# V, `
The machines also must be cleaned according to the following $ m6 O& p) O/ ^
schedule. All times are constant:
, U6 J( d6 F9 T8 i( b' V4 L4 l0 t* ]; @! U7 c% T) p
MachineTime between cleanings Time to clean
) S; ^4 F9 b. @A90 minutes 5 minutes) ~0 G+ F% g+ s+ {: } w
B 90 minutes 5 minutes+ F/ h; G$ g1 i, A
C90 minutes 10 minutes0 j+ o5 D) }* k: B9 G7 R
* e" T! g" V" z: _9 Y9 v; QPlace the graphics for the queues and the resources.
8 e; V' c5 {; J9 T9 `2 Z8 X3 HRun the simulation for 100 days.# C: t: v1 Z2 Z- K, f
Define all failure and cleaning times using logic (rather than resource $ e5 X" y$ `5 d) J
cycles). Answer the following questions:
; u" i$ W& U0 `a.What was the average number of loads in the waiting queue?6 `1 d& C7 H/ V) |+ |$ b
b.What were the current and average number of loads in Space?
7 m* L# I/ a. n& |How do you explain these values?
* w+ h+ f+ e- q* N; j# \- B |