本帖最后由 GJM 于 2009-12-5 21:43 编辑 9 Y( e1 T" b5 v3 [# N& T
/ B1 L" H- Y/ G4 Z底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
9 s- @6 ^) G+ D/ {, m! J/ M7 E; g9 N- ^8 Q. E- b0 b( p- C
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
* p1 G/ o% k! n/ k1 C, N/ K% f
7 L+ Y; A1 x, P$ I: S2 v1 C, h--------------------------------------------
# f2 y) ?+ @: h( Abegin P_something arriving
9 k; V W7 I/ g move into Q_wait' Q" `% r3 A6 K! O7 [) N: @ I! b
move into nextof(Q_mA,Q_mB,Q_mC)
4 l! s& S) ]+ m5 y) ^ use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
1 G3 _- f ]/ p send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
( N8 |. X2 ^# e1 o send to die# v4 }: O8 u. q- O2 [
end8 |$ b1 g% m8 w
4 I8 G) D1 f3 jbegin P_mA_down arriving/ \) n( c$ W3 L) B- q! t- s
while 1=1 do , g0 x5 D3 ^# w0 x$ b: L% ~& a2 K
begin
0 h! G, Q5 n4 D* O wait for e 110 min7 z ~: b) a$ q$ N$ { Z# N
take down R_mA
& l. {) b* E/ \. \$ G wait for e 5 min5 K) D- n7 o" N& u6 t8 b
bring up R_mA
, U* Y l1 i- G# d1 J6 a end
/ U& S4 t: Q! Q5 Q! S8 g+ Eend
2 Z F3 U/ @& Q' }; t0 n" A; y
1 Q6 U0 B( @/ f5 E e( Kbegin P_mB_down arriving
$ v6 H. p7 ~4 y4 h while 1=1 do
1 H0 ^: S q, _0 B; e+ j" w* Q7 M5 B% ]. w begin
( G9 w& B& t1 X# H( d" ` wait for e 170 min! }8 h; M% Z9 v! \* _
take down R_mB
2 p: W: m' c# r6 ~8 m% E wait for e 10 min; c4 Y7 Q$ D9 e0 h, D! X4 f2 L
bring up R_mB2 |) A( u" H0 s4 z
end
0 ?6 O2 {3 X8 X9 G. ]& H/ Aend
8 l2 L/ B% I. e% w
7 P& G; D9 H* F5 w# B% |( |begin P_mC_down arriving
0 N' q: L3 D( R( G/ U while 1=1 do 0 ?4 h9 w0 F+ [9 ]' n: ?. u
begin) Q' c" l9 v! Y- F% t
wait for e 230 min) O, N& d: F# P7 j3 B/ m3 I
take down R_mC
/ T* Y# K! O! l6 ^1 D3 U; T6 D wait for e 10 min
! Y5 q5 B, ^. j2 B/ e7 n5 A bring up R_mC9 W( H. ]& W" r) C
end- W1 T& j6 F& m' ?9 \- u
end
7 f% m! I- N" Z
# l' f* ?7 k, t( J0 Sbegin P_mA_clean arriving
% B$ A! o8 {; x6 ~1 `+ [2 ` while 1=1 do
2 ?% Y% W" q+ h' ~, E5 M/ Z. c begin
$ B. o3 r6 q, C) k( Z1 D wait for 90 min* E' X) J6 D& T! ]% {5 d
take down R_mA
8 y- Z; n) ~3 e wait for 5 min, V t$ {" E4 [ b
bring up R_mA- \! ]. D* D5 f* k1 l! z0 V& n
end
/ V/ u/ V7 N, z4 A% g5 X0 P) g. g& Nend
5 t; x: Y' N: c7 S4 Y* M" C " |: m% T, l; m$ ?- K; n8 w
begin P_mB_clean arriving O5 e8 g3 `9 r+ y( G
while 1=1 do
- h4 t' t7 I) @/ f7 Z, z/ E0 T begin, e6 _ u/ i' @ A" z {
wait for 90 min% ]5 N- g3 {& A- O" A. ^: k
take down R_mB
# G+ w, k2 |" J8 p2 a wait for 5 min
2 c, e: ~ I# u' j! a bring up R_mB
! I! J7 g- X$ a6 V5 x end! m# d2 T9 o, q5 J
end
% M1 O! y5 Z- l' [* V " T/ J1 I7 r, u- u
begin P_mC_clean arriving W8 V, L2 P3 t# t" s8 ^- p
while 1=1 do
! k* ?2 y4 A' e* z begin- f E) \) B: H2 w, p
wait for 90 min4 T$ m3 V9 U2 t. \( p9 s7 z6 P( T
take down R_mC3 W" [0 A7 [) i5 ?2 t
wait for 10 min' j- d3 u" I( z' n
bring up R_mC1 ?/ s5 @# H" F/ C; I3 V8 D
end9 M1 Y" R0 X" W0 Q) o
end T% Y3 i7 p% j9 e4 w5 U" a' b; F
----------------------------------------" J% o4 j0 F+ S: V7 w4 W: g! d u; L
6 Q9 v+ \ ]( l
Exercise 5.9
2 z# Y( Z5 A* h6 o% s9 H# v' Z, A$ ~+ v
) A, E# {0 `! ]! C4 _Create a new model to simulate the following system:
5 k/ E+ J; R3 f2 r. z0 ILoads are created with an interarrival time that is exponentially - k; q: {2 I3 w+ n8 m+ N$ R( E& X
distributed with a mean of 20 minutes. Loads wait in an infinite-
$ m' \/ T% x5 o% S5 ^5 X- Tcapacity queue to be processed by one of three single-capacity,
0 P; g7 z) q9 W" S: ^arrayed machines. Each machine has its own single-capacity queue
7 |3 d' W( g R P" twhere loads are processed. Waiting loads move into one of the three ) C0 @$ C, ]% Q! `8 `8 Y3 ]: \
queues in round-robin order. Each machine has a normally 4 Z+ ]# c9 e% f5 w8 S# Q0 {
distributed processing time with a mean of 48 minutes and a standard 4 [3 g3 f6 I: @9 W' S5 h- L" G
deviation of 5 minutes.
" \" o) J) U9 c$ SThe three machines were purchased at different times and have
# a n/ {6 f: |2 i/ S4 F* Cdifferent failure rates. The failure and repair times are exponentially ! B! f8 x' X% M% J- ^- D
distributed with means as shown in the following table: , ~) _5 [3 | x: j( L3 N0 L
Note The solution for this assignment is required to complete 7 H" A5 C% p/ o! q
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of $ E' v/ V4 b4 F
your model. ; t; U. j* i7 U8 R) I3 e# @1 n
0 g }6 i$ }9 F/ b% O. V2 \" Y) XMachineMean time to failMean time to repair5 H: P5 N: { t! W: |
A110 minutes 5 minutes0 A, B% Z$ l$ a- s$ a- P9 b7 [% X
B 170 minutes 10 minutes# P4 K' R1 {9 j) f* @# g2 ?
C230 minutes 10 minutes2 d4 o# e+ s t1 f* b
5 c, G) {4 A$ U1 e6 V5 Z& X% v+ M/ |The machines also must be cleaned according to the following
4 G& P6 o! s8 |' Y7 T; \ A, R* Sschedule. All times are constant: ; l+ d% u9 f' Q1 t; X$ `9 P
5 }! \- X" f3 I! u
MachineTime between cleanings Time to clean7 v, T1 z4 [ h
A90 minutes 5 minutes, J7 J# f, ]' a2 g2 n
B 90 minutes 5 minutes
, y1 Z5 l1 Y5 C9 C/ nC90 minutes 10 minutes
6 H/ ^+ @7 J) b: L- d; ]; k5 w# ]
6 s- p3 J3 R8 fPlace the graphics for the queues and the resources.
6 o# k" J1 J% c; ~Run the simulation for 100 days.
+ e& O5 I/ p0 oDefine all failure and cleaning times using logic (rather than resource 1 S) k! Q$ n4 U1 z
cycles). Answer the following questions:6 a8 _( I' ^$ |' R$ P
a.What was the average number of loads in the waiting queue?
, g' D+ [3 @0 @. {b.What were the current and average number of loads in Space?
: j$ G) n, F5 f( FHow do you explain these values? 4 z: }+ {' J+ E' N3 s
|