本帖最后由 GJM 于 2009-12-5 21:43 编辑
* u6 a6 M' Z. a* V0 n
3 I' p! I' L/ s8 d7 o底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去9 m5 S7 g+ F1 w* x
* z" \; Z8 H s2 k5 y [* m9 U9 Y
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!' y" \ B3 J7 u: D
c. j" @' q8 c! A( \--------------------------------------------
' ~9 |7 f: ^+ i$ ]- vbegin P_something arriving% F; W, F( r' B
move into Q_wait }* N& M; o- g( Y5 K
move into nextof(Q_mA,Q_mB,Q_mC)& L5 S! d& ?2 M; f8 B0 i
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
* v2 ^7 R; _: r& [; t send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean). e* U- e9 K6 {
send to die4 F# T) j( E7 {" Z/ [
end. z! Q+ a5 r" b% g! u# o9 e, q
8 g/ u, B# }( E8 ~9 p0 v' n2 x; X
begin P_mA_down arriving
; q: k7 R n: ~ while 1=1 do
0 X7 a2 j# y, B" n4 S1 n+ U begin
& ?2 \8 X6 |8 a6 Y3 R wait for e 110 min5 T- z$ m2 s& L& ]
take down R_mA% V4 G) H; g; ~' I2 [& y; G
wait for e 5 min! k' [0 z' O2 P& F
bring up R_mA6 q( d8 C. t# v5 m5 s' }
end
. ?6 h6 n6 ]5 R; y0 | oend( x. n* r. L: z* @ ~
" C6 Z6 N7 G5 b( U; t Dbegin P_mB_down arriving7 q# J5 n. _" h2 o' L
while 1=1 do: v+ G) Y/ z; g, G# D
begin
) h! a. {3 t: Z7 v wait for e 170 min( K1 ^5 d/ S% D n" _. `5 o
take down R_mB2 n( g9 I8 @* y8 ]
wait for e 10 min
. b- X$ X- m) U0 m bring up R_mB* e1 A* E& k3 W
end
4 V1 L1 `2 j, }- U3 e+ mend! |0 N6 ^ B% c" @2 ^
* n, ?0 B. j6 C7 i
begin P_mC_down arriving
1 v& \# C4 k2 }' J% R while 1=1 do
* m( L+ M; ^; A9 C$ b begin6 y; k3 U& Y p$ j
wait for e 230 min }; R9 V1 Q! {8 n* o! S" F8 U
take down R_mC
4 J( C# b/ J! Q0 p# y wait for e 10 min1 J+ m/ h A# R! z$ M7 v: B( a
bring up R_mC+ A4 B5 R' d* ]* o" w
end
, b; P8 _% N1 U% M1 \. bend
3 ]. W: L2 R! c% J2 f# D5 ?1 N
O7 W% @7 z/ x& m3 u7 C9 Dbegin P_mA_clean arriving1 V3 c$ i) b z( t5 X2 X
while 1=1 do
' y- E% m' O6 N begin
) R& g$ P4 ?: Q- b wait for 90 min
/ `/ T- `" a( ?# G- l2 q take down R_mA
& z% d6 |& f Y M wait for 5 min$ }" O$ z) w* d0 z& C) M4 @/ V, d
bring up R_mA6 P+ U! ^* E a4 Z
end
) p( n5 L x; L: E4 A$ [/ R; zend
. F% ?) g- l1 [( h, N3 E/ ] o" ]0 j0 ^
3 a( V- k" ~. _6 J! C) nbegin P_mB_clean arriving% c. j R( r$ H4 g
while 1=1 do
! D' g m* r- }1 | begin! }. \# {' G' W C
wait for 90 min
* r+ {' p' B1 v1 o3 B/ g2 s take down R_mB
4 _3 w2 Q0 n+ ~4 n* o4 z wait for 5 min9 ?7 v6 d8 C8 _2 K) g
bring up R_mB; Z% t4 _* s. q- b4 K! D
end# K% r2 t7 t9 R2 f% G$ b v2 y
end6 s. J9 Y% q7 S7 E) j
; z9 X5 W( ?! n+ @begin P_mC_clean arriving
6 f3 [+ j: w/ V' z6 K" n while 1=1 do
' l' a/ Z! Y" `/ s begin
) |1 j& c0 _; t, D. y7 X; w wait for 90 min) j% s1 L8 z- m8 d0 ~3 T
take down R_mC. a4 y4 a3 V* B5 i) L
wait for 10 min
# Y* O7 |" x9 Q8 ^: ?: J+ O* n bring up R_mC u H7 L. O7 J+ H' ?$ f+ m
end- M2 z3 N# X# V' a. a8 F
end+ k2 |; j: J2 G
----------------------------------------, D, J$ k f7 m& {% H
5 F8 C) f. k- |0 u2 yExercise 5.9) |& E. _- C8 d4 D
4 d# N. H- [: u) w# h' b
p% D; {! O9 I, I6 @( vCreate a new model to simulate the following system:
4 e( b1 {0 d. e H5 @Loads are created with an interarrival time that is exponentially
~# Z* y4 y& D3 Ldistributed with a mean of 20 minutes. Loads wait in an infinite-6 B. A- }- t5 U l. z
capacity queue to be processed by one of three single-capacity, # p9 j1 |6 E7 R, u! ^# p: ~
arrayed machines. Each machine has its own single-capacity queue & g+ H4 M' |0 v# v o
where loads are processed. Waiting loads move into one of the three 4 _. m7 l0 o5 ? h, k$ b
queues in round-robin order. Each machine has a normally
% K$ U2 H' b3 W2 cdistributed processing time with a mean of 48 minutes and a standard
5 p% l, ~* ~) u4 X% Q' ndeviation of 5 minutes.+ u' y$ B" o( A! p; W& `
The three machines were purchased at different times and have - M$ {# X; T& |8 e! R' l+ g/ I
different failure rates. The failure and repair times are exponentially
! W2 i. E9 ?& Q* I1 v* ]) d0 q' f$ ~distributed with means as shown in the following table: : Q. V, G6 p& `. a) ?
Note The solution for this assignment is required to complete
3 D: ^* H) H- R* s; cexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of 7 g8 w: ?8 s, k! G9 A/ @. C" Z, V
your model.
, T4 U0 l4 ?8 t3 N& q4 ^* v4 O& z) E( L( D/ Z* n' u. d, o
MachineMean time to failMean time to repair- ~, [/ l1 v* i8 R7 R5 K0 L3 k' Z
A110 minutes 5 minutes" n7 k! [+ g8 E1 {0 s5 h, j1 b
B 170 minutes 10 minutes
3 N% o8 O0 @' g# M P+ K+ o; mC230 minutes 10 minutes
8 w! {7 x* e- n2 `& j, b& M% @5 `2 k$ W7 x* {
The machines also must be cleaned according to the following # A$ }3 b2 @' h& E) n! G) v
schedule. All times are constant:
6 X7 j4 T9 J& Z7 z& P* h! z% d H
. ?, i; m# C0 K) _8 |MachineTime between cleanings Time to clean* d7 C5 \' S2 J+ {) F! E
A90 minutes 5 minutes
' m; U7 o. ?! G2 P( CB 90 minutes 5 minutes* B; c2 J& j8 |$ j* q% z G
C90 minutes 10 minutes
! o# {. @- v2 l$ ~9 A7 y9 r3 U) W+ A" i" V* {
Place the graphics for the queues and the resources. ! v" M6 V* Z# ?- A" Y
Run the simulation for 100 days.( t; s# | ~' H& u& `, W
Define all failure and cleaning times using logic (rather than resource
4 y, Q7 m( J0 ^: q# o1 Zcycles). Answer the following questions:3 f2 v0 |3 A% Y; a; V- R% I. U
a.What was the average number of loads in the waiting queue?9 b( j4 `# Q% Z, n& q# @7 S% o
b.What were the current and average number of loads in Space? - A0 M2 Z! S7 S2 F% b" ?% ^* W6 s
How do you explain these values?
% X6 \& g# U7 i2 { |