本帖最后由 GJM 于 2009-12-5 21:43 编辑
+ c/ Q) }* c, f: i) e, i
* q. b4 M2 X, B4 ~5 a& J底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去3 x- g: @% Z6 `) k3 q% s
' q: I1 b2 H' A" ^不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
, e4 A9 s; V, g* c
# X# H4 ?% @8 ^; P4 t--------------------------------------------" u* Y# p/ L6 U
begin P_something arriving
1 u$ Z7 ?1 [* h+ E+ r move into Q_wait
9 @' v. M% Q, |8 k3 c move into nextof(Q_mA,Q_mB,Q_mC)6 C0 `" d* \) I. [9 q/ f G2 q
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
2 L& w( f5 u, i send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
9 G9 c% U" L. K' D# u U send to die& o, K4 D; V& R* c9 ]
end
, C. C+ Q9 |: i+ ^& M7 @
s! ?) t8 C+ }+ lbegin P_mA_down arriving8 |0 F3 L3 h" k* ?" O) m9 X- g
while 1=1 do * y& I' [. c- |+ c9 S$ C" @. T
begin% J6 e: b- W0 K. s6 x Y l
wait for e 110 min
- T4 _5 _) `( A# I) g; | take down R_mA% l) U2 @" C! L+ j: i+ y
wait for e 5 min
3 M0 E+ x5 h) A1 D8 m, F bring up R_mA1 ~+ B& i! S+ P6 x( B
end4 M* b6 s/ Q( [+ x9 E; ~
end
7 x+ b( y& E' n- x & c- c. \3 d( W% c( N# \4 K
begin P_mB_down arriving7 r) ~. Q9 \& x7 ]" [9 _3 Q$ K, M
while 1=1 do- b8 h' E! a; g7 J" a
begin g% J \5 F$ \4 A5 \
wait for e 170 min
- A6 S) [/ ]# N, X take down R_mB M$ Z- t; y, F: T9 r. T
wait for e 10 min2 w/ {8 Y) q8 _8 l0 g4 g6 o% i
bring up R_mB
) _& |+ ^. t6 i1 F end6 ~; l7 }; x4 i' V
end
. K: D+ p5 x2 |1 _9 v3 \) [ - z3 e: y7 k" C$ @6 A0 Z% Q
begin P_mC_down arriving' ?, _ s' e- \4 y. r3 P
while 1=1 do + A5 n: n8 Y2 ^/ d; J; {- s: C9 [
begin
1 j! C" w' n$ z% g. h wait for e 230 min
& l! `2 A6 W3 q% i4 D: R take down R_mC
7 x% j' g- V' V( C/ E wait for e 10 min0 d9 N. p7 ~! s+ R/ u" t
bring up R_mC& j2 ] N* \* `7 L
end4 k8 r9 K6 R/ q2 D/ N
end. C6 s# h7 {( H0 B+ `( c# A L
/ q3 I/ y9 {* D& q9 ~ c$ ~
begin P_mA_clean arriving# o6 F! L2 [( p4 h: g6 D
while 1=1 do
. i/ {) o: m4 r8 b" W begin
+ U6 A# i# _4 X& l' T9 n wait for 90 min
9 @3 T ]5 H- |+ \$ @7 w) h3 j take down R_mA. Q8 \6 q Q7 S/ G
wait for 5 min
j5 J" W& w, F/ [ d! | bring up R_mA1 |1 i* V# |/ E6 P
end) k* \8 Z) W' |) g% Z {' R* E
end
* P5 E4 O" j# v% T
: O- J+ t% s7 E% F6 b# hbegin P_mB_clean arriving
0 t( m* n0 m4 X. t while 1=1 do
4 R Q1 z% M% G begin+ l8 @/ B9 l3 U2 t! L
wait for 90 min% z# m6 P+ R3 e4 ]
take down R_mB3 e3 Q# S4 a) c8 ^
wait for 5 min& Y" u6 k; v# x9 `6 O* h! `3 {
bring up R_mB
0 v4 L% ?$ s2 R& ~ end" E! W$ ?$ P& B
end% x7 o6 _! @8 p& _% W, G1 m
0 R/ j3 x8 { N$ J- w, F$ Q
begin P_mC_clean arriving
+ l# w7 {) I% b8 A& N5 ^0 ^ while 1=1 do
& V! `, u( h' }% O% O begin
7 I1 n* i% F9 L9 T \5 c1 @ wait for 90 min( i1 {: s( M& G9 z8 k
take down R_mC
; C/ Z: N# e: O$ @ wait for 10 min
j5 n# o6 s2 F+ i bring up R_mC
9 O. v9 b! u" N$ D! g ^2 K) T3 a% Z end Q1 V2 D/ V0 c- @/ i% Y h& |
end
4 G, a: y4 B9 ~4 `----------------------------------------
6 v5 P: ?3 \ t+ Y. u5 U' h % v/ b/ C+ i4 [$ e5 |
Exercise 5.9
7 V) f) h1 o+ a/ Z1 v' a y' {/ n) y4 f, ~3 l
* y3 u$ D9 z s
Create a new model to simulate the following system:
) W v. @+ r) GLoads are created with an interarrival time that is exponentially 9 m; j" T- c: V' ?7 y
distributed with a mean of 20 minutes. Loads wait in an infinite-. Q+ ^: s5 _# V5 [
capacity queue to be processed by one of three single-capacity, " l( `$ _) ?- X5 H2 c7 J
arrayed machines. Each machine has its own single-capacity queue
) m9 i" M. D% d$ C# P( K# Iwhere loads are processed. Waiting loads move into one of the three
' ?+ W0 p! u, P) \ J0 \queues in round-robin order. Each machine has a normally & Y/ P. v! A( |; n% n* x+ Q
distributed processing time with a mean of 48 minutes and a standard
! k. w; S7 g) U8 Q' | o9 Qdeviation of 5 minutes.
- t# h. z' t* e- T& UThe three machines were purchased at different times and have % J) ^6 N0 ]0 e# [: C( I8 d
different failure rates. The failure and repair times are exponentially
) |3 T( y8 O3 y' w) jdistributed with means as shown in the following table:
8 b7 H- `9 {5 a# [2 @. f$ x" uNote The solution for this assignment is required to complete
0 f0 I6 Q- C& p0 R# N. l1 Z a/ _exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
# c T* r, j K, v) t& K. \; g6 [your model.
7 U4 _* S* H: j& |$ Z
$ Z) A! P% h5 vMachineMean time to failMean time to repair
" q& l; X1 ]5 S* M; qA110 minutes 5 minutes" j" e- z5 }, c. W
B 170 minutes 10 minutes
( G3 Q" `% z/ I" A: W# E: y+ _C230 minutes 10 minutes
8 `1 R9 D- y4 E
: |! X2 V3 g, J' NThe machines also must be cleaned according to the following
; a' {, c; |. i( G" o3 c3 [schedule. All times are constant:
) Z, h/ L8 v& e3 e% x' A( `) O: t- z5 h8 B6 W) K
MachineTime between cleanings Time to clean; f" f* C3 Q- b* _$ @/ L
A90 minutes 5 minutes6 U a" @4 m& [, p8 A* a8 B
B 90 minutes 5 minutes
, u9 R: _$ L; B0 ]- g5 J& }C90 minutes 10 minutes
" x2 [$ L& G8 ~, Q
& ?; a% m* x/ Z% o$ `( V$ xPlace the graphics for the queues and the resources. $ C I% @2 x6 T# X) x0 g$ [1 M
Run the simulation for 100 days.
" B; i. z K' n! }5 @. TDefine all failure and cleaning times using logic (rather than resource , k \+ \6 U9 b1 _6 _8 P; [
cycles). Answer the following questions:
: ], I" I. J2 p3 X+ ~a.What was the average number of loads in the waiting queue?- x q) _2 {9 O5 H% y) z$ r% d# R
b.What were the current and average number of loads in Space?
3 Q8 F7 a2 G" k9 VHow do you explain these values?
$ d, P& s' z3 ]) j3 t. \ |