本帖最后由 GJM 于 2009-12-5 21:43 编辑 3 @, f+ |7 D: z9 e# @* L
- a o" V4 B9 z/ D8 e( w( s" i+ Q
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
% H6 ?1 j+ g5 S2 I# h; x* ~: U7 K3 w. b& p9 S0 }6 }1 m. U: `+ I l7 G
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
I( Z' O. F b% x; z$ Y; {( R4 e% Z! L2 m7 o
--------------------------------------------
! N7 _' X; W, c0 s7 }( Gbegin P_something arriving9 e9 @7 T. r) c) C- E
move into Q_wait6 p$ _5 Z3 g* @( ~9 A
move into nextof(Q_mA,Q_mB,Q_mC)" h1 D( x3 J: _+ A/ ]
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
/ u" @, C/ O5 R; G+ ?8 [2 X send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
- L/ G9 u$ {$ R l% _0 t/ B- _ send to die! _& ^8 `1 _8 z1 |% p
end
. n( Z. N# E$ y" [/ G, G7 H
" Z7 [6 ?' L8 [- ]( Ibegin P_mA_down arriving
- q5 N8 I, C/ R9 U- y2 Y# z while 1=1 do 2 I0 K" ^7 x/ w( }& n
begin
: X7 U/ g! I( k& F wait for e 110 min: M. f2 o, v; b: X3 A7 z4 J2 p0 s G4 e
take down R_mA
+ V! H* O* w$ ]# c0 Q: y: X wait for e 5 min8 L" o6 K3 R' X; C
bring up R_mA5 y) H. D7 {) |1 g8 N. R6 v
end$ M# J: s: v2 ~' [2 C/ Y# `
end
& s% e2 [7 s! L, ] $ i4 l4 e* x1 F- m% J
begin P_mB_down arriving
) S* t8 V# b* ]8 F while 1=1 do- C& \$ Q# s5 }; J/ X& R5 ^
begin! R& l: m" s: M
wait for e 170 min" n: F, [' Y+ L
take down R_mB/ U& u7 F6 R' H. N
wait for e 10 min
, [ h* l# o" ~4 N, W% g bring up R_mB
" o, ^! `. Y% f- i& s end
[& _# D; t, {2 G% D, u: Hend
' l* }0 w1 k0 x! i 2 g6 S, d Q' d3 r9 ?: ~
begin P_mC_down arriving9 n- R6 W1 H1 \" G3 i. y7 G
while 1=1 do
0 J# M" l3 z* i% N2 y begin8 v1 ` p! D* Z V: ^
wait for e 230 min9 p6 M; S$ k( h0 j/ n6 f, V
take down R_mC+ f x* }' Z3 _3 b4 j$ h/ x9 Q
wait for e 10 min
1 d8 X* U: w4 c+ D. V# Q0 y' v# l: e bring up R_mC: L# s9 p7 ^8 k' ]
end
, ^- p5 V6 C! J7 j/ rend- L( `" e' y- Y `- f; c
- G& U: ]5 R6 I& Fbegin P_mA_clean arriving! v n4 h! r! }2 F4 k" h
while 1=1 do
3 H( J1 X( i) f' q. V begin) d5 Q% p/ q) L& o3 a: }- R
wait for 90 min
/ g& x' v4 n3 } }. l take down R_mA
- a$ N. S J# [* u+ |/ @ wait for 5 min
0 D; a& l) E8 D0 e5 r- x- x7 I bring up R_mA
7 |+ m+ b4 N& g0 Q9 D6 G end
# W, {$ Z2 j1 M. Rend' o& W0 [7 P0 F. V2 u: g
6 N5 f) J5 s) ~
begin P_mB_clean arriving
% j0 ?* ~. \0 T! |$ ? while 1=1 do0 s1 u4 O( U& a0 x+ A2 G4 }2 }
begin ]/ I' a, d# ?9 y4 r5 q) [
wait for 90 min
\2 g! B( Y X take down R_mB
) f% V: Z0 [# H9 C9 H* g B wait for 5 min
: d: R6 d$ _ ~3 B+ m bring up R_mB
; I& @+ g, U$ U/ q4 O) I end
) q- \; b" D7 ~3 x- ]! {end C& {+ \1 q) b
% q5 ]9 a# ?' U; {
begin P_mC_clean arriving! ~$ T: f& V t5 z' V1 O2 C
while 1=1 do- W7 W& G8 M% p5 I, c/ k0 Q
begin
, m; e. i2 R* D- u" d wait for 90 min
; I- A0 c; y, ]4 y7 N. V" n+ D" V* A take down R_mC L& Y* w- Y- i
wait for 10 min y* N1 ]0 k; b D& y- k- }
bring up R_mC. `* `2 y* k; o2 A( W) _! M
end3 A4 Y' Q9 G& T& ~% N; X, Q' }
end/ B& p: r* Q/ {. R7 f7 U I
----------------------------------------# \5 O! b9 Y" m, q* p8 D
" J# a; U1 l, K' BExercise 5.9) d% {# H% L% \, b5 d8 g
+ @, R0 r" D4 ^! e
8 f# O8 Q" L" q0 {4 A2 ~7 R
Create a new model to simulate the following system:
- B/ N- r. G, A. a9 dLoads are created with an interarrival time that is exponentially ' C; F) L3 w7 n$ `* X2 O
distributed with a mean of 20 minutes. Loads wait in an infinite-0 P* t* {5 B) e9 V I! a
capacity queue to be processed by one of three single-capacity, $ n" c7 ~, a* h- \* O+ l" i
arrayed machines. Each machine has its own single-capacity queue
: ~% I7 V2 A$ K: L- j% [where loads are processed. Waiting loads move into one of the three
3 J# h( x2 s9 m# ~queues in round-robin order. Each machine has a normally ( ~3 m$ J9 l5 o4 ^
distributed processing time with a mean of 48 minutes and a standard ! A5 @! f0 d, p
deviation of 5 minutes.
3 o; _2 P) x6 k4 ?7 n& bThe three machines were purchased at different times and have
+ k7 D6 V4 Y) ?; W* Edifferent failure rates. The failure and repair times are exponentially
6 [5 k7 K8 H3 M4 w; L. d/ {distributed with means as shown in the following table:
0 s o4 [: b" |) ENote The solution for this assignment is required to complete " D# O( G- V: Z% k; @& o0 b" C
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
2 U* C1 b$ O7 _: byour model.
2 S! L3 j- \/ e1 D
/ O# h( g6 \+ B& T* g8 yMachineMean time to failMean time to repair
/ U( {# k4 H8 I: hA110 minutes 5 minutes
4 ~) P: P; ]& p: ^B 170 minutes 10 minutes
" _8 j1 L- R& S. A" _C230 minutes 10 minutes2 ^+ B5 f% K4 P; O* N E
! B3 a$ l$ J( F
The machines also must be cleaned according to the following / N+ v: x6 X; Y5 c, B1 W
schedule. All times are constant:
" D k/ L6 N6 N' m! _3 ?! Q2 v- S- `! t2 p
MachineTime between cleanings Time to clean$ p Z2 x& h9 g
A90 minutes 5 minutes
, F0 p4 s8 q% d/ l! a9 J+ |B 90 minutes 5 minutes
3 r2 W1 G7 y$ ?2 I, U% v" JC90 minutes 10 minutes
+ E6 v7 U6 b" A/ p
/ |$ E; L* |7 x; oPlace the graphics for the queues and the resources. 4 r/ H9 p6 b+ X; N
Run the simulation for 100 days.
% b# y/ U' G* I5 Q( cDefine all failure and cleaning times using logic (rather than resource ( m0 H- _; m/ v# b
cycles). Answer the following questions:' I0 [' n5 j: ^! {4 D$ ?& G# G
a.What was the average number of loads in the waiting queue?( ?! q0 ?/ n8 l! h! L
b.What were the current and average number of loads in Space?
0 y" h$ s# b+ @0 F4 l5 KHow do you explain these values? ' b- q: E0 ?: K5 j8 l. |% o& y1 ]* B
|