本帖最后由 GJM 于 2009-12-5 21:43 编辑
) X3 e/ v$ E* U3 H1 e, U
! T- _7 \+ t, ^0 @; H M% E' l, D. d底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
- b1 x, E8 I R
; n: e( _& k5 s V不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!& ~3 S, ^8 R; {5 a8 V, ~
" \8 r( s& h* b- c--------------------------------------------; G4 M+ `" \, B+ z% S
begin P_something arriving9 \7 R# S S, i8 |: p" }( j
move into Q_wait
( T4 c' {* C0 G! e: x9 } move into nextof(Q_mA,Q_mB,Q_mC); A( W3 c7 W# [: c* ^1 b l; F
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min2 e/ F: [' z0 Z
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)/ q) p1 C' t p
send to die
' d U4 L1 E7 F8 w& k" ?end
( u) G1 T" w) ?; i% N # F% ~9 u2 n/ G9 c6 n# n# t e
begin P_mA_down arriving6 H6 m4 z& O7 R: X \' U0 q
while 1=1 do
; j; i* d5 b+ f8 u begin
; ~/ t4 G' k& L" c& X" I' T wait for e 110 min2 k2 k B7 m4 ^1 M& b5 Q) X
take down R_mA8 A7 O8 R/ `# e; [/ R; h
wait for e 5 min: ?% T) J* w( n9 S9 U ^
bring up R_mA
' d+ b& q2 S, _* I5 K( p$ H( [- W end
, g2 C8 w7 @7 lend* _5 d/ {$ B3 u# e" \. m* q
0 p, ?7 b' t( Z# e- I, S
begin P_mB_down arriving/ d2 m4 W& N1 e8 a1 U2 c; R& V$ p
while 1=1 do2 ?& i2 Q0 [5 V: L, K- t+ I* C
begin
( M+ e3 ]/ v1 l- } wait for e 170 min
+ o* H M# n; z3 c" u) N take down R_mB: ~! G* n6 w5 j1 U
wait for e 10 min E# m; J, J" g9 c
bring up R_mB
" v3 a2 J3 _1 D/ x3 b end
! S* a2 w7 ?0 I6 Z Y3 {7 H+ Xend" \. {8 o7 ] I5 X$ T$ n/ H4 N
8 \+ X* {5 f7 F) v
begin P_mC_down arriving
3 x* H* q; @$ |+ J$ g; m while 1=1 do * k# S7 ?; y6 E: R
begin `& C: H, I" r% T5 Y
wait for e 230 min Y, U8 J! g! e) d- x$ e% W3 l
take down R_mC6 }8 U3 G- D0 _- l1 J
wait for e 10 min
1 q" `6 S6 k7 f/ z8 M b bring up R_mC
( t; o t3 [( |: L end. k& v) q8 V" D1 R; R
end
, x/ `! R/ I* F! r$ |; d
+ P9 C! e4 z6 p+ i! O1 lbegin P_mA_clean arriving
. Q* f) P1 V9 e4 K while 1=1 do
9 e+ i; v$ X) R K4 @9 y e# G begin
s1 [+ |$ H7 i0 M6 q. [ wait for 90 min& r7 J- F5 H* t: k$ w1 B
take down R_mA M) p. T. \' b1 O* K" A4 e
wait for 5 min
) u$ j/ O7 t. s6 { ` bring up R_mA
% r7 c& L- J4 f; v$ | end
* W$ t8 [& z( V( X2 e* Qend2 A# G/ k) l2 V! z; G; F. ]
4 v3 n& V8 ~2 j1 A# J P$ G3 G2 l% n
begin P_mB_clean arriving. I9 m. z9 E Y5 r& x; h4 R0 J
while 1=1 do
. x& Z- `3 [+ Z0 J4 q begin, U" @9 M. o5 m3 @2 G: C
wait for 90 min
1 r$ b" U4 i$ l6 A! I7 o1 U take down R_mB
8 S# N3 [3 S; O& h/ b- c wait for 5 min
& Z& x; W" I- i9 c bring up R_mB- v6 K! a& N$ g: ~& y! u
end
9 t- x: Q" L9 ~end
9 D) \0 x, {( w, P0 C6 b/ S+ \ / l+ m6 k1 Z. E9 g1 t
begin P_mC_clean arriving
/ e* [1 h& B9 w# U while 1=1 do
3 G" a5 T7 R1 h6 G) P* v5 X4 [% R begin
- @9 _. Z3 n/ `+ U) @ wait for 90 min" Y; S0 M Q$ c1 b- O! j% z' e
take down R_mC/ G/ `. ^5 H7 x
wait for 10 min
* E+ R. |1 s- P- x B" F4 w' _" L bring up R_mC
6 A5 q/ t! y7 T! i; Q end( j4 N. O3 d2 Z1 H0 ]
end
+ M4 d8 @1 C5 _. Z f5 Q----------------------------------------1 J6 }0 g. ^: O" L* F
1 v4 x3 N0 u* K( m! z1 ^Exercise 5.9
8 y9 m" D: Y, v
7 K2 y. ^9 S5 ?% |7 u7 N/ J; i8 n2 b l2 A& v
Create a new model to simulate the following system:4 \8 L0 ~/ z$ v( @* a. R
Loads are created with an interarrival time that is exponentially 7 t, f* C( R# n4 }
distributed with a mean of 20 minutes. Loads wait in an infinite-
( \% S+ a3 G. B* J$ M! C- c# G: Tcapacity queue to be processed by one of three single-capacity,
8 D. c9 h7 o' _3 a( G' ^arrayed machines. Each machine has its own single-capacity queue 5 u# z/ C7 `5 b+ r S. `
where loads are processed. Waiting loads move into one of the three
8 \8 w9 c* P) ]3 |queues in round-robin order. Each machine has a normally
* Y% Z U$ G% n3 `# b- pdistributed processing time with a mean of 48 minutes and a standard
$ {" g7 A: |: |$ V4 {( z! b& ideviation of 5 minutes.4 O* H; q# c9 L- J
The three machines were purchased at different times and have 2 g6 j/ |- J' m- }
different failure rates. The failure and repair times are exponentially 9 Z+ K4 t0 y1 G* z, T/ T
distributed with means as shown in the following table: " m% g8 Z) s! W v/ p
Note The solution for this assignment is required to complete
- t( P# a, R4 y1 E, K% @; oexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
! s' }5 @# f7 I! t8 s5 ~your model.
! j$ j( r. u" z, h+ u5 l9 y" O! X- p5 l; @: J
MachineMean time to failMean time to repair% k$ [" j" i: f
A110 minutes 5 minutes
# F( _, m) X m* Y& `6 CB 170 minutes 10 minutes
7 U2 A2 k _4 c g4 p8 L, rC230 minutes 10 minutes
) r9 B, U% \, O9 E8 R" _1 a0 N4 W- h+ c* {
The machines also must be cleaned according to the following
X0 n+ |0 ?- a( U5 Fschedule. All times are constant:
5 [, P- [3 M4 y7 n$ ^5 ]
- S2 g% ~- N1 f) r2 m$ `MachineTime between cleanings Time to clean
5 q7 ]" m- I, s/ `8 v% lA90 minutes 5 minutes" A/ ^1 O) m6 l) X9 W0 E
B 90 minutes 5 minutes% n2 _/ ~. S* ^' R+ n3 H2 I
C90 minutes 10 minutes6 j- o: ~) m% l7 y4 C
- ^& C3 |9 J* @0 @/ F
Place the graphics for the queues and the resources.
0 L" [: c) b% _! {0 K9 gRun the simulation for 100 days.( k7 n. x/ V5 v$ e4 I+ i
Define all failure and cleaning times using logic (rather than resource
# |& O- o% Z! Y& dcycles). Answer the following questions:+ |! m7 v0 t- _6 R1 L" B+ {( P0 a
a.What was the average number of loads in the waiting queue?
" H% d3 `& S2 _( L* |b.What were the current and average number of loads in Space? & r: M9 Q3 v' E0 R9 w& @
How do you explain these values?
( C; x% [% N, v |