本帖最后由 GJM 于 2009-12-5 21:43 编辑
( x1 \, d. } o+ J0 {8 ~" A4 a0 M, y5 r- I
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去% U3 o3 o2 A( ~# I/ A' Q. }
5 \6 h& w- P& z6 _& L4 o( J
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!0 W) r# j$ k" k( K
0 J: W D5 M+ [4 Z$ P
--------------------------------------------# z, \2 s+ w, O6 g; j
begin P_something arriving
' Q4 J7 f" [1 L: R. ^) l2 B move into Q_wait
9 l& s+ W, l0 r# R' v3 J7 S& S1 \ move into nextof(Q_mA,Q_mB,Q_mC)
' |3 Q! [+ ?# h+ Z) X. n/ M2 C use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min7 o: g( B8 c1 ]' F
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)% J. d J& T. m* e/ C
send to die$ W! R8 M2 K2 _2 ~4 ?; W# H
end
) O( I5 b+ Y }, w9 F! a- [3 O * }: I, V. _& S* f W$ J) q
begin P_mA_down arriving
. i: s# |7 _( {3 P1 L# k7 q1 e while 1=1 do
- u" f6 s0 Y3 @- Y4 `: P! I begin# Q; `. o F% ^- j( `
wait for e 110 min
. K- ~; E* d4 y) [2 k) o take down R_mA+ l( e8 Y1 j* c" o- u$ k( u
wait for e 5 min; t: V9 }% J$ ?1 K
bring up R_mA0 X0 S7 J: E$ T6 m9 g
end- t0 q4 C" W" j) f7 d8 x8 a3 o
end
( c A' H" @( v( { c, z
6 D6 j8 ]( O" H$ c# q. J4 x3 Ibegin P_mB_down arriving
, D m3 y2 p ~4 L while 1=1 do: ~& e& N6 H* I5 P6 G/ B
begin
1 R _& y1 J4 d9 N0 s wait for e 170 min7 h! `0 t5 S r( i. P
take down R_mB
/ }! b4 m9 `" B8 \3 V* O wait for e 10 min0 E1 G( O! d4 X! U" |! R
bring up R_mB+ a1 [0 x7 A. S( i0 D4 C; V6 J
end
* y; l: J8 ]6 f C) e1 u7 bend z- l3 G) ~2 U
. R' c: D& s" P( A# B, Ybegin P_mC_down arriving
# l `4 y2 @- N" }$ k" r4 Y while 1=1 do 2 [% c7 `& t/ w6 `, {0 q5 C
begin
( x7 a5 C6 H% K# \ wait for e 230 min# ~1 d h! }, I
take down R_mC2 v6 q$ Z! s' k9 [- p
wait for e 10 min6 e5 X2 H. ~4 v ?" @) ]; O0 ~
bring up R_mC$ Y8 a8 N0 v- o7 d- {' @
end$ L+ D( m$ R1 R7 x9 m; i% O
end" v% m7 _. b0 N5 r( G5 H, _
4 ~. t; I7 t' z" t
begin P_mA_clean arriving
' a: x$ c- ]5 L* N; _ while 1=1 do
" g1 Q6 w$ c3 @6 c$ c4 O begin$ `9 _$ W! _( r* ^3 W6 \ W; e$ @
wait for 90 min( }0 e, n9 S/ i- @
take down R_mA' b ]( s/ @! g
wait for 5 min" X" J: o, S8 e
bring up R_mA
; @7 J- H/ P6 _! {2 {( P3 \ end7 u( D5 ^ P( V$ S8 i3 R9 |' I9 J! X' x
end
! k. R; i2 S* g. }, M
) D- P: i: ?" K( C. Dbegin P_mB_clean arriving" {* v0 o1 b- H. y$ L1 M
while 1=1 do8 X! H* ?9 X, [; H
begin8 k R8 `* w& c+ y$ P5 |
wait for 90 min
& F t$ q1 S$ B5 x2 `/ N5 f6 O" E, y; J take down R_mB
0 V2 B: [/ K8 b; m wait for 5 min8 u- g# n4 \# K' [# H
bring up R_mB2 Q6 e' v$ b8 z( D9 ?. q6 p
end' k* F5 s4 f, o1 }
end9 x( r/ _) v" |: z5 N! V, p& T
) T& h& C- S! j8 o( A+ |begin P_mC_clean arriving
: Z) L6 C) i: E/ X+ @ while 1=1 do! P( t- }2 c5 |& i$ s; ]
begin
; K: e- S6 @% O& T$ o" h- | wait for 90 min
3 e: M0 G: H: h3 K/ P& V' b take down R_mC% m6 N& H8 W$ c1 O2 P9 u3 n6 z
wait for 10 min3 Z2 }; l$ D* q8 e n i& l
bring up R_mC
3 \! f% X* e7 Q5 A4 i end' ~! u) l" [: T: x6 a4 M% Q9 }' n
end
% n. Q( d( h0 b ~---------------------------------------- ]& @. B9 c# J" h
* j6 B0 K* @8 r7 U
Exercise 5.95 k8 f1 s0 O5 j
7 Y9 Y$ {2 A5 X$ w# ?- P) s. m
3 N( x5 y, p0 ^" c2 GCreate a new model to simulate the following system:
9 X7 g! x( k1 L t$ t% YLoads are created with an interarrival time that is exponentially $ G C2 F7 t8 y# X: v# y
distributed with a mean of 20 minutes. Loads wait in an infinite-
+ L7 L. e: m) p# @2 V, m7 vcapacity queue to be processed by one of three single-capacity, 0 b* B8 R0 ?& z/ D. Q2 W
arrayed machines. Each machine has its own single-capacity queue
4 ^1 G) U, x& jwhere loads are processed. Waiting loads move into one of the three
8 D0 H- p6 Q9 z* [- S* X) pqueues in round-robin order. Each machine has a normally 6 _8 k4 ~2 d2 b$ H- u4 i
distributed processing time with a mean of 48 minutes and a standard 4 }( S* } n' w* J" s; j' N
deviation of 5 minutes.) E: g, u$ u$ r
The three machines were purchased at different times and have
: y5 q' C" ]+ G1 cdifferent failure rates. The failure and repair times are exponentially
! e+ L) s% J2 L2 v* }! Mdistributed with means as shown in the following table: * w8 z3 |5 m# J/ B# ~
Note The solution for this assignment is required to complete % ^4 Z" t; Q3 R. d
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of 6 w8 U6 d O- [1 W
your model. * n6 L. }% C% _
9 N; I0 d& ]* c5 N# aMachineMean time to failMean time to repair
! z% B3 `0 k4 Y1 y0 ?) XA110 minutes 5 minutes
/ J/ ]( X9 Z# _! _% f. S, I2 z/ A! DB 170 minutes 10 minutes
$ i/ _7 r x3 Z8 QC230 minutes 10 minutes
% b# }7 l+ s2 @7 ]6 s# i! T2 c/ U7 T$ e
The machines also must be cleaned according to the following ( z1 Q0 q. V' t1 f% C6 J4 n
schedule. All times are constant: % J* z0 \7 T F
7 G( T, W$ k3 t2 P$ ]+ Q
MachineTime between cleanings Time to clean; N" T5 A3 Z" f( U7 c0 t% J+ R% i
A90 minutes 5 minutes
?6 E- K2 G2 d8 s; j1 w: d* h! XB 90 minutes 5 minutes
2 ^- @1 h) p% K& D2 u6 ?% ~- v. ~% {C90 minutes 10 minutes$ S3 `* s% N. I* Z( q5 Y3 V- z8 V
, p# ]6 T) n$ B( g" l# X9 ], _ o o
Place the graphics for the queues and the resources.
4 Y, C( g# v1 b& }Run the simulation for 100 days.
5 e/ \/ f/ o; m2 r$ l/ FDefine all failure and cleaning times using logic (rather than resource + Y: @5 B- n3 T* U2 Z0 l
cycles). Answer the following questions:# [+ ^3 r9 H! E
a.What was the average number of loads in the waiting queue?
3 h0 r5 L5 w7 Mb.What were the current and average number of loads in Space? 6 ]2 ?2 B& M" p2 Q/ A; }6 j) x
How do you explain these values? , K: `5 I! T* I0 {. W. i2 u
|