本帖最后由 GJM 于 2009-12-5 21:43 编辑 0 E# W0 K3 u5 q F: C, u& a. s* G
! b8 b1 B- p% \2 C$ a; O
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去5 m; j9 C! @" I( x- F1 E
7 P% `5 {$ A! l
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!9 B$ l7 {3 P7 L. b
" z+ O G/ d H- |; z m4 t& B--------------------------------------------
5 E( Z1 s1 a8 l; S+ g8 K" ?begin P_something arriving1 L/ Y E$ L+ ^
move into Q_wait( U+ i2 i& g! n0 k5 z4 n; n
move into nextof(Q_mA,Q_mB,Q_mC)! [) ~* `6 ?+ M- b7 ^
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min1 Z# _7 T+ a, _) Z$ G; {
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
6 \3 C. g. p' o( y send to die2 S3 i0 ]0 Y2 ^$ {* K7 `: ^
end
; e9 a! s: }" G( v i. _
7 y% i, y% s* W4 K! m" T$ n1 ^) S, Mbegin P_mA_down arriving1 `/ c1 s1 O* O8 c3 T4 t
while 1=1 do
- M% B! t7 u; i% C& P begin9 ~7 p5 N1 m9 n! i8 |% B& S
wait for e 110 min5 q Y; B. P; t' i7 K- [" J
take down R_mA
; m$ l/ n4 |5 I& E. n/ X9 j wait for e 5 min- i! k3 d( e6 [
bring up R_mA# H5 H' q4 w2 N$ ~! b g0 D+ O
end
B$ l0 |4 v3 m ~- Qend+ L: T8 f! {/ q& r* A. n9 V h# H- z4 C. w E
5 N/ l3 b# h5 R' R+ v( y: O
begin P_mB_down arriving
0 T4 i" {* i# V2 n while 1=1 do* R2 ^2 o9 I& Q, z3 ]8 u# {1 W1 m
begin
* ?- l3 a. ?( s7 B& t+ C wait for e 170 min/ x5 g, Q8 `1 }) S& q
take down R_mB
" k8 ^) z/ i4 P7 d# a1 T wait for e 10 min$ m+ e( m- K( q& J/ V, F5 E
bring up R_mB
/ k- z7 n! P* J0 w end
! |' a7 E% \- R7 f5 bend
% M! Z7 k. ^' j$ C! O + b- |& {3 D+ ^$ b) o
begin P_mC_down arriving1 N0 @; a4 J9 m+ ]- q% V0 h
while 1=1 do 3 A$ e) g( Y. k# R+ G, T2 K8 }
begin1 Z: R* M' _) l9 {
wait for e 230 min$ @) X4 x d5 N- n: G
take down R_mC
$ t/ H+ N6 N! Z0 e' }; a$ v: P wait for e 10 min
N( n% x# K# J4 _* { bring up R_mC1 L3 w. Z. r* ~3 n! e
end% A+ F4 f4 m9 ?8 J% P
end
5 C, _' v, w# e
. B3 A# t7 L, B& w- a. Rbegin P_mA_clean arriving5 H" k) h& {$ f: ` M5 n1 i( V/ ^
while 1=1 do
+ i% H0 m. @8 s6 W9 c begin
0 e( f; @2 C1 v7 p' A' l wait for 90 min7 V; J. @# \3 s/ P. b
take down R_mA
0 f, f7 G) L: w1 u$ W wait for 5 min
7 M* f4 A+ p S0 B+ c' \# z bring up R_mA$ A& i. I7 s0 `- i3 h; S( i) y/ Q9 t
end
^5 E2 E6 g' u& aend+ T3 s8 b. ?! E" r6 ~
6 R: y* P/ o9 v( r: vbegin P_mB_clean arriving( x \% D8 [* R4 t
while 1=1 do
( U5 v, e7 F; a! p begin$ a8 f! Z4 A9 Y
wait for 90 min, a% u6 s" w8 m1 p. s
take down R_mB
7 d: X9 u( i( C2 u) u$ [4 D wait for 5 min8 E8 x! w* l4 k" D5 a5 Q
bring up R_mB: X. N+ K: T6 @8 A& x; T' n* R% [
end
7 R7 e; _! Y$ yend
" E( z- p { g& Z: q6 S
! d1 E5 Y2 h) o- D+ lbegin P_mC_clean arriving
9 A0 {( D- a: w- P; i while 1=1 do
; u. V+ Q# s2 U5 ]6 J begin9 n! _- o( f" X4 P
wait for 90 min
$ z5 A8 S( z \& h7 t9 G" Z) C take down R_mC x/ b/ a2 S( _# {, m4 p& h
wait for 10 min* v; X& d r- m- i+ ^
bring up R_mC, j; z. q2 u& {3 }
end) B B0 u! S7 {# z' M( j
end, c* e& a \+ `; `4 D1 V& Y
----------------------------------------& Q: C9 A" e" O6 o
) i3 X" i8 _9 {Exercise 5.9; L4 R- q- ^% C
* b* T" V6 R& M" V& A+ S X K8 ?2 w% X% N" T
Create a new model to simulate the following system:0 w' O g F6 N/ x5 N) f3 X
Loads are created with an interarrival time that is exponentially
( G5 y, ^6 W& B) I$ ~8 Ldistributed with a mean of 20 minutes. Loads wait in an infinite-0 B/ V4 Y- G s+ |' o+ Y7 I
capacity queue to be processed by one of three single-capacity, & z9 q7 E C7 H# N5 D( G
arrayed machines. Each machine has its own single-capacity queue
' q; o+ A9 O: j' `4 S6 @where loads are processed. Waiting loads move into one of the three + `8 s# ]) o' w: E4 |
queues in round-robin order. Each machine has a normally ; G" v& L2 g4 v) \
distributed processing time with a mean of 48 minutes and a standard
" H* e# y7 J/ n9 fdeviation of 5 minutes.. q `. F/ l8 @$ I4 @3 C% B. }
The three machines were purchased at different times and have
* h2 N! A9 m4 x4 o* b0 r9 _different failure rates. The failure and repair times are exponentially
6 G& |0 k9 o6 Z: T/ z2 udistributed with means as shown in the following table:
0 F8 I, c5 [4 `/ P) NNote The solution for this assignment is required to complete
2 [, n9 a& j2 B; ~: S# u+ mexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
4 k* G9 I3 e; g. D+ |' [1 Wyour model. - B- T# Y* a Y$ }4 T
& P4 H* p$ u4 r, `: _MachineMean time to failMean time to repair
. n# W: S( d( A8 cA110 minutes 5 minutes& @4 ?$ }) E1 R& F
B 170 minutes 10 minutes' P+ c. ]7 z3 ^1 ?" J
C230 minutes 10 minutes
. O! E5 g0 J2 g( C; h4 ^# e* ~2 d+ v
The machines also must be cleaned according to the following ?& K: H( C- m9 {0 i2 F
schedule. All times are constant:
: O3 A. W& \$ \! N/ X
& W9 ?. |6 E% d1 V) wMachineTime between cleanings Time to clean
, q: @7 K* q5 f5 D5 _6 @A90 minutes 5 minutes
: ?7 N4 [. K4 X5 t$ AB 90 minutes 5 minutes D; g" w/ s0 w, [* \4 |: d; J% w
C90 minutes 10 minutes$ }& t5 v0 N7 J6 k4 P
' _8 V( P/ Z2 ?; c# c8 |Place the graphics for the queues and the resources.
, W# Z) P9 K+ t. ^# s9 v `) dRun the simulation for 100 days.
" j: J8 c) v6 ?7 n8 s8 t) }4 `. }Define all failure and cleaning times using logic (rather than resource
" h. Z, ~. y5 i; r! z+ n7 zcycles). Answer the following questions:
7 M& T2 I L0 `0 i8 n/ G% G( ^a.What was the average number of loads in the waiting queue?) A/ D7 @9 t6 F$ g `1 Z
b.What were the current and average number of loads in Space?
. n9 D+ w8 P3 ^0 X- y+ s1 ~3 Q3 THow do you explain these values?
; l" t# O% V0 q+ F! M. h |