设为首页收藏本站

最大的系统仿真与系统优化公益交流社区

 找回密码
 注册

QQ登录

只需一步,快速开始

查看: 6862|回复: 1

[悬赏] 求教:海龟的遗产传递问题

[复制链接]
发表于 2008-5-3 20:47:29 | 显示全部楼层 |阅读模式
请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
& @! ?5 r& {1 J) S+ t9 I/ d4 Vglobals
( H* P4 w6 @, e% N, m1 g[
+ }# \3 W' I7 c: P  max-grain   
5 O& t6 x# o7 E/ S# a' K! [/ {2 T6 y* S' F+ r: `! _
]
. C  g; m& j8 D0 w4 ^+ j
- H, I/ z3 g# B0 ]; i; {2 U7 @patches-own  _( ~2 T4 h. ]7 O  n0 n; R
[
  c) Y5 v: M' Y& W  grain-here      
% @9 p! R2 P# H& o* `  max-grain-here  
3 a' X% ]( m& L' d]
& J  O% y0 b: s: j; M4 q1 ?$ Z# \( w+ S/ v& X
turtles-own
& U( U: ^' v6 f* D$ f; R2 }7 e0 d[
6 N; @& Y4 \8 k  o2 ]7 D  age              0 U! M1 F, z" i: `  n$ r4 |
  wealth         
. @4 o( z. N! j8 |( K# r  life-expectancy  ' U- }7 a# ?0 Q  e
  metabolism       8 [) w' `, T( g- }- k& ~1 K4 s3 V
  vision8 A5 E! K% D, ~+ \+ I4 g7 D
  inherited         % l2 N- S6 r3 d, d* ]6 v9 j% G
]
2 a0 P$ L7 ?$ p' g6 \8 c/ q( w* j# i- b  D/ B7 E, ]
' W  P9 f& b+ {1 z7 t
to setup, H5 l  b$ p4 ~2 J
  ca
- z. Q2 \! F/ R- v; ?" B! d+ ?: b  set max-grain 504 R0 w9 m. J2 }2 i- V9 B  t! ]* s9 x% P
  setup-patches
7 u, I4 }7 c" w% \4 }& z  setup-turtles
  ?& c( e% C$ `* ?  a  setup-plots
' g( P; w6 z% |( v" }: Q) ?: G' I/ M" V; q  update-plots' \* z( j0 t2 A2 j9 R
end- P  Z. E, l$ H  b$ E
to setup-patches& k, |% }' i; O+ r+ ]6 M
  ask patches
9 K8 D& n+ g8 B    [ set max-grain-here 0
( i, o+ ?5 y* c: j. y/ A  ~      if (random-float 100.0) <= percent-best-land
# C  I$ X& V, O$ W4 C- j8 A$ l        [ set max-grain-here max-grain1 ]' r/ @3 g& I3 o5 f
          set grain-here max-grain-here ] ]1 @% R+ T5 t1 N9 F) e& `8 o
  repeat 55 W. a9 h! o0 w: W6 o& `* L$ H" t
    [ ask patches with [max-grain-here != 0]
& {; I4 D) p" b# \        [ set grain-here max-grain-here ]9 W+ h) [1 D& J0 `. f, V' c* y
      diffuse grain-here 0.5 ]* i1 |5 w6 p. i; a& u7 f2 K
  repeat 102 I3 g5 B* @7 A
    [ diffuse grain-here 0.5]         
9 `% a8 }8 K  b; g4 p4 e7 x, v7 L+ T  ask patches
7 I5 f- L9 j' E' J    [ set grain-here floor grain-here   
! i  g% Y) [7 C( _+ b      set max-grain-here grain-here      
' J: ^5 p/ l- {0 |8 |% n4 H      recolor-patch ]
2 e  W/ v' j+ {3 y, `6 L" ^! d, Kend$ Y& P. Y: j7 l! Q
to recolor-patch  
& u9 {& ]+ I% n* v1 z& \6 n6 H  set pcolor scale-color sky grain-here 0 max-grain
$ S, X& B$ u& h6 V; wend+ I2 d1 Z% E$ w8 h* I/ e$ q
to setup-turtles% G+ x9 a* f6 M+ e2 m- n' V
  set-default-shape turtles "person"  i2 ]/ v: `: |/ T
  crt num-people" }& x9 w. X; A' q! f7 }5 T
    [ move-to one-of patches  
7 l. [5 }* \& S' X% G      set size 1.5  
6 u. g* }/ O2 e, ]      set-initial-turtle-vars-age
- |( m" e( N4 g' K! U      set-initial-turtle-vars-wealth
# `1 j+ S7 E9 D: @      set age random life-expectancy ]
! T1 c* L! y7 q; W0 G. m, K3 o& Q  recolor-turtles- v; \- w& s7 a( r
end
/ s9 I$ y9 v" U1 s! D( R( w% y# }. _) X+ p1 c- _! x
to set-initial-turtle-vars-age' G2 v5 d) L' ]) K0 M, N  a
let max-wealth max [wealth] of turtles2 C- ^; U- {' D) W5 H8 ^/ f2 L
    1 J  f9 d& Q1 D) ~  ~
     ifelse (wealth <= max-wealth / 3)
5 {  u2 \7 J5 v8 ~& J% r, X& s. \        [ set color red
2 _3 T6 a1 H2 p, p; {& W          set age 09 I9 Y+ N2 D/ v0 e' w2 h. g7 W4 N
          face one-of neighbors4
+ h+ N, M" d/ m( }0 f+ O$ T          set life-expectancy life-expectancy-min +
. e" p" _. m/ v* m% m+ O2 D                        random life-expectancy-max
9 J  Q! P* E, L, J/ x( J          set metabolism random 1 + metabolism-low
  p  w) G9 u: i, D" O& v- A0 b) g1 y          set wealth metabolism + random 30
1 I  A0 u( y0 x% m$ S' ]: ~' Z          set vision 1 + random max-vision+ k5 t. q* j! z) R0 I1 q! r
             set wealth  wealth +  Wealth-inherited-low ]# U0 W+ ]# g$ f) Q$ Z2 A5 D
        [ ifelse (wealth <= (max-wealth * 2 / 3)): w; P+ y# [2 i& F) a
            [ set color yellow
; A0 u0 D; f/ i/ F, E/ I              set age 03 z. [& s5 m. |& m& K0 K
              face one-of neighbors4 ; W1 D+ s4 y7 v
              set life-expectancy life-expectancy-min +0 a9 W! C( F  Q7 G
                        random life-expectancy-max + 1
8 M* t9 x2 W+ B, a% v% ^/ \, O              set metabolism  1 + random metabolism-mid
; q# v2 |* K6 k; A; j  @              set wealth metabolism + random 30
' Y5 J7 b' q- Y: g; L6 E              set vision 3 + random max-vision, U' z# U) B) V+ Z: Y1 V
                set wealth  wealth + Wealth-inherited-mid]
+ w/ j2 `- ?3 r# m+ J* \& h            [ set color green
  B, w; X& i/ ]              set age 0
7 t( w. E6 _4 N  T+ B              face one-of neighbors4 7 b* @. k5 i5 D" G' b+ u
              set life-expectancy life-expectancy-min +
2 k0 R: Y0 U( R% u8 U9 ^$ L                        random life-expectancy-max  + 2
( _+ E1 ~% z6 Q" I              set metabolism 2 + random metabolism-up  F) o# U( Z! Q! V+ Q
              set wealth metabolism + random 30
( }) V% v' V9 Z1 h7 x+ p              set vision 3 + random max-vision
( h: l5 j& j; ^  K! j: K3 N8 D% |  B              set wealth  wealth + Wealth-inherited-up ] ] % T! K, R6 F, t- s  W* E
: ^, X! v2 b6 h0 S" v9 T
end) }4 }/ ?- i. e  s0 `8 _
to set-initial-turtle-vars-wealth
0 D3 E# C9 {4 u! I/ {, ] let max-wealth max [wealth] of turtles
+ t+ q6 q% X0 h6 V          set age 0" a4 |! T  U' P) B
          face one-of neighbors4
8 y$ `9 i1 @  `6 r% a6 j: f          set life-expectancy life-expectancy-min +8 q5 Z  b! L0 `
                        random life-expectancy-max
6 X: b, G: V* c2 x0 u0 l: G% g          set metabolism 1 + random metabolism-up: S7 k$ m# x! D& b! z4 E6 I5 T& f
          set wealth metabolism + random 30
$ ?' ?4 k' w# u' h3 _* g1 G% g4 w2 |          set vision 1 + random max-vision - T. K/ k* C) k
end6 @. Y. V6 w: E. z2 Y# V
to redistribution0 S- p) E" x2 {
let max-wealth max [wealth] of turtles& ^3 M$ V( v; d
let min-wealth min [wealth] of turtles
, e, W) Y1 X& rif (wealth <= max-wealth / 3)
/ b* T$ [/ }) t4 O  L7 Q [set wealth  wealth + Low-income-protection ]
( D+ }& s1 c5 I% K$ Cend" c7 }7 d1 l. u% e9 a+ M# L2 `, A
         
' ~  L8 V0 V! Q( o* o6 \to recolor-turtles
; t/ i3 a" `% i9 t% n* D# X5 f  let max-wealth max [wealth] of turtles
+ t% J% {" ^) w7 y/ J  ask turtles# p" J% X& O& e) Q, M
   [ ifelse (wealth <= max-wealth / 3): n+ i% w2 [; L8 t
        [ set color red ]# g% S; c/ S) O, J7 \
        [ ifelse (wealth <= (max-wealth * 2 / 3))
4 G+ T. A- G8 H' ?+ @9 ^+ D            [ set color yellow ]# n( ]! m/ C9 b! ]% H8 s6 o+ z2 h
            [ set color green ] ] ]+ Z' R2 Y% T8 L4 d9 Q( W
ask turtles [ifelse show-wealth?2 D! B: g; r$ M' x  D
    [ set label wealth ]; ^' {. i  `3 z' U3 j. y% \5 }
    [ set label "" ]]( r) n# ?& s1 Q1 p7 u1 _
end
) D4 l7 e4 F' d2 ^% F' A0 G) p" e+ G! i5 b
to go
/ s& ~# \2 c: v$ F% d) T. a# e  ask turtles
( l" H9 f9 ]# m! V7 O& @    [ turn-towards-grain ]  ; @( T: g4 p" y
  harvest" {9 P( w0 `' f- P
  ask turtles
& I) K/ y5 P. L# T& ]: I    [ move-eat-age-die ]
( F0 }7 E  O$ H  e  s5 u# @6 ~+ q& R  recolor-turtles
+ J! h" \% w* q) }  if ticks mod grain-growth-interval = 0
/ O- y4 {& i8 U# U    [ ask patches [ grow-grain ] ]% S1 v, q2 r4 n' @' J& R
   
* o; i" z; w5 f2 Z  J, y1 w  A  W  if ticks mod 11 = 09 j4 {& P" i' s5 ]- R3 _" D0 R9 l
  [ask turtles# X8 W7 U/ _& q! i
  [ redistribution ]]: M) P/ d6 \! q+ D$ Z
  if ticks mod 5 = 0" J5 C# z' `$ r) |- ?/ ~
   [ask turtles
' m4 f$ P# ]" N. I: D1 ?  [ visions ]]7 {4 b6 @9 a0 s9 s# u" E- V
  tick
: P: p: g: }# I" V# @& a4 B/ [  update-plots1 r: [7 V4 J" u4 U* P/ t
end
4 Q" J2 \9 _* Nto visions8 u' d% n9 f, n. r
set vision vision + 1
! e1 m% s# Q* {) B- h, U/ h+ Dend' N! ~# I3 z7 ]" Q2 m

( Z: k* i' e( t  K, y7 y. G
$ \# v3 T& E0 v5 j8 W7 ?2 ~: }
, z2 r) q  Z2 |% r8 H- ?to turn-towards-grain  8 B& t: ]' B" r+ [4 [8 |- u5 s
  set heading 0
8 A/ T8 g1 e' M% X3 Z  let best-direction 0
( X1 o  D5 t2 H  let best-amount grain-ahead! w1 E; U5 c0 {9 w
  set heading 90
" G* `( K2 d$ d% `; o' Q* L  if (grain-ahead > best-amount)
9 @2 k2 U* n7 D3 A" A) [    [ set best-direction 90+ m, v; j1 v( p$ p
      set best-amount grain-ahead ]* @5 _2 @# H* P; D8 N- X1 q" g
  set heading 180
! R1 Z6 \9 B- u( o  S  if (grain-ahead > best-amount)( A4 P$ m: c% Y) z; |
    [ set best-direction 180; k8 n$ w( H+ _1 Z9 F4 r
      set best-amount grain-ahead ]# c* v" Z) ^! p* H. b
  set heading 270# U! t1 ~5 C- a# j: L
  if (grain-ahead > best-amount)' _. x) h- D' A1 b, \
    [ set best-direction 270
% y* o2 W' s4 T0 D/ A1 A      set best-amount grain-ahead ]: o; B3 A9 s: s
  set heading best-direction
- `6 P; \7 o8 b+ j4 j6 v. eend
" t5 l7 a% A+ x, |5 r# F  m" `* o! ~/ L$ X( i% u7 G
1 d5 w) b; I3 }& |! b0 k1 h% L8 u
to-report grain-ahead  
4 [: _+ F+ S7 p, {9 _# D2 U# J  let total 0! @' a0 e; q5 V) ]# a" u
  let how-far 1% u6 ~9 J9 G* H/ v) x5 Q' {
  repeat vision2 O, B- F8 X: M5 N! ?- z
    [ set total total + [grain-here] of patch-ahead how-far
# v) g" E* I: h9 T      set how-far how-far + 1 ]
* p6 Z! ?& L1 [; |  report total
  E" S: R( U, L; k/ gend
" ]9 C* _$ [' p
3 G( N9 C4 ]- }1 C0 m  L; Y$ f( @to grow-grain
) }" F3 R. R3 r2 E  if (grain-here < max-grain-here)+ u6 E. e$ t! X" M/ Q
    [ set grain-here grain-here + num-grain-grown* p/ n0 x1 q0 s7 |0 Z
      if (grain-here > max-grain-here)
; }+ y- C6 }1 u+ n9 J        [ set grain-here max-grain-here ]
7 f+ d% L" D1 j! k5 L      recolor-patch ]  N3 j& r2 c6 e1 ]) l
end
, ?: @& k, J$ L, q0 \& ?, W/ g& Z( A2 uto harvest  k7 h' S$ M; X& V/ a" M  D( a4 X
  ask turtles0 Z% j# {# n$ |7 m
    [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]! l: @3 z. U) x$ u; {
  ask turtles
' i: B/ J2 ]2 x3 }% F! ~" v4 H    [ set grain-here 0% f: ?; [* ?" {5 L& A( Q
      recolor-patch ]9 E2 ?$ b, y2 G9 Y4 t# L, M
  : B5 G  M& |! J2 Q
end! r$ {0 x6 l7 i: o3 L5 Z8 @$ u

. I; u  f  x+ f$ B- I" cto move-eat-age-die  
* C6 u/ C3 j5 I. k4 _5 K  fd 1* ]2 k1 q" p# E0 [( `) g2 Y5 w
  set wealth (wealth - metabolism)
' \" P  @, F( P# K2 A; L% p8 c/ Z    set age (age + 1)# G* A- H2 B# ]. c
  if (age >= life-expectancy)4 q0 q3 L  ?) U0 m! E
    [ set-initial-turtle-vars-age ]
# s9 Z  Y$ R" h, u8 m3 F  if (wealth < 0)1 n& W2 f3 y) I/ g, T5 m5 V
    [ set-initial-turtle-vars-wealth ]5 q! |! F7 w9 }* _7 G$ l
    # B# G& Z5 O4 R5 K$ n
end
  h3 O: H/ H$ s8 }8 A+ o# [6 a% u

3 p3 e* e) J5 Sto setup-plots( y/ ~& z/ O2 c4 s  z7 o
  set-current-plot "Class Plot"  |. _( M2 u' k5 Z
  set-plot-y-range 0 num-people
* B$ w1 V2 u# T% u  set-current-plot "Class Histogram"/ c5 n( r  {9 K2 O! Y* V& |
  set-plot-y-range 0 num-people7 b; o  o$ o; w* x1 q5 d* a2 X$ r2 n
end# L' r6 B" F9 H1 Z' ]; [3 N( K2 S
  f# x; r( V, B/ G# u2 t
to update-plots
# W1 c5 }- e0 y- \  update-class-plot' g: i! E  ^1 @- ^6 G
  update-class-histogram8 p( d5 C" B1 u4 R! r1 U7 ~
  update-lorenz-and-gini-plots3 J3 T- E) o# h5 Z
end  ]. K& ~. n" O9 V
7 d5 l) Z, ~6 v) J8 A9 ~
to update-class-plot
! [% v! e( U6 W, _  set-current-plot "Class Plot"
- j. t! |! |3 Z  set-current-plot-pen "low"
. I/ U6 a$ H% d, b( K  plot count turtles with [color = red]
4 w& b- t# v) [6 Z  set-current-plot-pen "mid"1 }9 O9 O. j# k2 |
  plot count turtles with [color = yellow]
2 w. T/ u  Q! }4 X% r  \! {7 e  set-current-plot-pen "up"
; r$ v! P8 l. }# u0 B9 k1 `+ s  plot count turtles with [color = green]1 j5 J6 D. }2 n, m
end
, K/ D- O% O( S2 l9 H( N& g5 a8 i! a+ J( R+ I
to update-class-histogram
, B, j# ?. O8 N4 h( X  set-current-plot "Class Histogram"
( |2 y' ^8 z$ a3 y  plot-pen-reset
  }2 W. c, N5 r  i- h  set-plot-pen-color red/ e- O- t4 z( E0 n9 P+ R
  plot count turtles with [color = red]
& H3 M: n; c0 D6 F1 E* X) n8 r  set-plot-pen-color yellow3 s1 T  f$ v) \* Y* ?
  plot count turtles with [color = yellow]  f- |( }% Z( u+ ~6 G9 |
  set-plot-pen-color green
$ n, L  f0 H# B" l  plot count turtles with [color = green]
5 A' K6 T2 A5 Z1 c3 ?1 Uend+ Q; i: s9 ^; h0 Q( t2 t6 I* i
to update-lorenz-and-gini-plots
3 a. ]& E% {( Q, w- H7 z  set-current-plot "Lorenz Curve"
. H7 s1 k) u8 a' ?6 M9 H6 z0 I  clear-plot
" T) W: o0 O# Q0 h
$ F. t1 ~4 G8 i5 B' v; d  set-current-plot-pen "equal"- c7 Z4 p( t: m$ L/ c' S
  plot 0: i' u+ j/ ]5 b/ @1 o
  plot 100! J' ~! X. n8 ?' f( t$ ^: o
  h: @' U+ M( \, X! z
  set-current-plot-pen "lorenz"5 O3 l, A' `  E7 [6 f5 V
  set-plot-pen-interval 100 / num-people% o- ~0 k0 _0 F1 }4 }
  plot 0
! K# O+ A1 \: Z) N; G9 v+ T4 c# Z1 ~% S- w) L
  let sorted-wealths sort [wealth] of turtles6 _% J/ `6 n5 H: \
  let total-wealth sum sorted-wealths; B9 [0 L/ E" q+ v9 y' h+ T6 t5 Q* q
  let wealth-sum-so-far 07 Y. j; M# F& ?
  let index 07 H7 M/ I! a, t, Z5 C
  let gini-index-reserve 0
+ h2 E( v$ F  c1 |; M* b
; m2 R7 l% c, n4 ]/ n7 U9 B  repeat num-people [, h5 v6 P5 |  ~1 x* j) v
    set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)' R) ]! x; z" J: @" o) a: D
    plot (wealth-sum-so-far / total-wealth) * 100
5 C3 w1 l5 f+ u    set index (index + 1)
/ p& w5 g+ T5 y/ n& ~: g- R+ [    set gini-index-reserve
( K4 G' A$ |- Q* X" o      gini-index-reserve +) j& ]; Z1 A  L3 }5 L
      (index / num-people) -
+ \! n+ ^- K" g4 S6 s' t+ J      (wealth-sum-so-far / total-wealth)
9 @* d4 O5 n2 T, p  ]  O* }$ C. F/ b  Q7 z5 c$ S  {% i

0 r" K* A0 V( n* r. g  set-current-plot "Gini-Index v. Time"
. n# |5 i9 u$ {) n: U5 U4 E  plot (gini-index-reserve / num-people) / area-of-equality-triangle
: y5 F) a0 G, d1 W0 J" z9 y# A; xend
0 ~1 [2 O* k% f. Nto-report area-of-equality-triangle4 m: |( A4 L, e$ g6 F0 K
  report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
) o$ A" i8 A. A1 L- q. P3 Fend
 楼主| 发表于 2008-5-4 15:49:14 | 显示全部楼层
自己写了用的hatch 但加在上面的程序中运行的时候总是出现问题T_T
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|手机版|SimulWay 道于仿真   

GMT+8, 2025-11-1 23:06 , Processed in 0.018000 second(s), 14 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表