请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现
' J5 @8 m: ^5 A) Qglobals" c5 J& k7 ?! b/ [% b- R
[8 z5 D& Y$ I- U5 F
max-grain + }/ j/ l* I# P" F( t$ y; B, k6 m
+ M6 @! f( ~* o3 M]- e& r- b, y4 P4 V4 i- @
: t, j2 ^, W' u/ s7 Y4 npatches-own
' R' A; s/ k( b6 `) D[ F. t' M. z% `% C q
grain-here ' _+ ]% Z* v& c! Z
max-grain-here
+ H8 R, A- I' d+ {; U]& g9 K1 S. B4 i1 x- v5 d) c/ r
5 X; z; |4 O" c) f
turtles-own2 K" y8 I. J$ S; u
[' N0 N1 i& ]# I- C3 a. n. G4 l
age / l: N( e, {9 ]$ W; ]2 `" ]
wealth ( }2 {, ^, e5 y' x0 c" U2 T0 X _9 k0 U+ ?
life-expectancy
1 I2 i1 w4 ?- t. N9 ?; h metabolism
# L/ g* [% L9 e/ A" n. M vision
- _1 e, g* E7 J# v9 ` inherited ) E G0 R) s: O
]- b% Y+ E4 Z2 A' H! z- H# Q: s
) d- U$ O6 u1 H2 C
1 `9 o. n3 ?6 v. c0 x. X
to setup; y% Y1 T" ]$ \% D
ca
( Z) V# F, [( A: ^7 A set max-grain 50% S$ w% v2 m8 X4 @! L
setup-patches @$ p5 }* |( R9 U, k' O2 T) {3 v) N
setup-turtles& K8 i2 R3 f) y( f% t( W9 M
setup-plots: y$ t% M. \ S9 h) B& X
update-plots
0 n- M( [" B& M) u! uend" r; w" ?! [2 x$ [8 A
to setup-patches. Y( g4 L3 X; Q4 D
ask patches
) h! W) v; v+ q- B# ?9 Q+ U5 T [ set max-grain-here 0
. d B5 }% ?1 y7 B( v: A if (random-float 100.0) <= percent-best-land
e& G, f, u6 `# B* c [ set max-grain-here max-grain2 m) s% ], S7 ~2 s) @
set grain-here max-grain-here ] ]
& A: b: ~% ~( u repeat 5
# ?6 R4 i1 C: p# X; K- [, } [ ask patches with [max-grain-here != 0]1 m) G$ w' I$ W$ g+ {3 ~1 a2 g/ D
[ set grain-here max-grain-here ]
; y, h, c8 u; s diffuse grain-here 0.5 ]
! x8 d, Y9 S; u2 g% r repeat 10
) _2 ?- j& d9 w) @ [ diffuse grain-here 0.5] 6 f- ~" q) l( D$ v# M& [$ Y
ask patches
; z9 g) \2 b. Q" p& ] [ set grain-here floor grain-here
! |1 t( [! j# y" ` S0 Q+ {$ M set max-grain-here grain-here 8 K. A6 }% A! S( |+ Q
recolor-patch ]
" J# M( a$ p: A4 N3 Y$ ^$ ^3 Vend0 d% K5 P; ?5 V, \2 \0 g
to recolor-patch 4 _# x" j+ e6 b+ q! Y
set pcolor scale-color sky grain-here 0 max-grain
1 C. { u5 D% ~: ~; J+ fend8 P# N) k8 }6 n& j; G/ ~8 Q
to setup-turtles- l9 Y, B: a; Z
set-default-shape turtles "person"2 V# |7 A7 B# d( {
crt num-people
3 _- j- E! ~/ O( N7 v1 T- v, G [ move-to one-of patches $ j" s" M" c" z$ y& Z6 L% K
set size 1.5 6 V- r$ N% ~( J/ C4 @
set-initial-turtle-vars-age$ e. p8 C3 W9 d" {- r
set-initial-turtle-vars-wealth# U6 j$ e; E/ s3 A! c r+ [
set age random life-expectancy ]- U* o1 b( Y- O
recolor-turtles0 u- z( ? A& W/ X
end0 } V4 A K- M! J$ I' M; T; [$ V7 q
/ P/ _- x" K4 C: X+ b% @* @ Ato set-initial-turtle-vars-age' `# }0 P% B9 C' L
let max-wealth max [wealth] of turtles
6 ?0 j/ X3 A- x& O2 L* ~
7 h8 y& C! w3 z. T ifelse (wealth <= max-wealth / 3)
$ _) X# U! L% ^ O# x0 p [ set color red 8 H0 {, a/ e' E) t
set age 0
3 |1 j3 R: m5 E+ Y' k' D0 {7 Q2 @ face one-of neighbors4 0 d5 _5 n7 v; Z0 y
set life-expectancy life-expectancy-min +
; Y1 W- c4 Y9 V& P& S. e+ p/ k& Y random life-expectancy-max
+ U$ o1 s( a6 w6 R7 L6 n' s4 q: e set metabolism random 1 + metabolism-low
" ]9 \$ [/ K; p( w set wealth metabolism + random 30. N1 K0 \6 ^$ F1 Z
set vision 1 + random max-vision8 H; e6 t6 X9 w- V
set wealth wealth + Wealth-inherited-low ]+ C+ Z7 n! c: E4 ^
[ ifelse (wealth <= (max-wealth * 2 / 3))2 D3 o0 }) l/ \3 _
[ set color yellow . h% b, q6 R* b' b( Z
set age 0
9 G9 ^/ @" \8 O G$ u4 Q; |! t face one-of neighbors4
" T' n9 q. L" k0 } set life-expectancy life-expectancy-min +$ ?/ |. ~ E5 h; T9 `, R( u
random life-expectancy-max + 1
* ?+ H: T+ Q( G! n% I set metabolism 1 + random metabolism-mid: a* ]1 E( \! g! ~" f i% y8 c. T6 w
set wealth metabolism + random 30) k8 J& P2 }6 {, b/ H7 h1 G
set vision 3 + random max-vision# h- T+ T( q! _
set wealth wealth + Wealth-inherited-mid]( p7 T3 g% F7 C+ k8 {* j. `1 z
[ set color green 6 M! ~# i3 J9 A' O2 E; @
set age 0+ H& v. N$ A% ^3 Y/ o8 ^% |$ _3 w
face one-of neighbors4 ' l& V/ v: o. ^, \, c% i& D
set life-expectancy life-expectancy-min ++ w5 _/ h3 }! w, T. c
random life-expectancy-max + 25 Z- d" L% t8 G9 _* O; o# x
set metabolism 2 + random metabolism-up' F( k1 F& `" o% E
set wealth metabolism + random 30; O6 a) K1 b/ g* f, R
set vision 3 + random max-vision6 y) p5 h; Z& ~2 {. o }
set wealth wealth + Wealth-inherited-up ] ] 9 {& z* Q3 C2 a! o( b
. q$ f' R. r( O
end- y, k+ J1 L' f3 U
to set-initial-turtle-vars-wealth9 k9 E% w( x/ `( k6 U
let max-wealth max [wealth] of turtles
" n5 r2 c& S* [" c9 w% ` set age 0 t {$ j# f$ M: M8 ~
face one-of neighbors4 / d1 @1 m5 x% F& L/ U+ K$ s
set life-expectancy life-expectancy-min +! `1 k5 \) r- }2 s3 z
random life-expectancy-max 2 x; h- m5 ?6 V( R
set metabolism 1 + random metabolism-up
. ~" v! W' L" _9 x, y0 }3 q5 { set wealth metabolism + random 30
1 ]0 @. O t/ F) q! @ set vision 1 + random max-vision # p& T, @6 P2 x* a- a* _
end# ]5 F5 q! g; s# Z r
to redistribution6 t, G" l% A3 _2 S7 x
let max-wealth max [wealth] of turtles( ^9 z+ e" a# n
let min-wealth min [wealth] of turtles
6 Z! A' m: L7 W. e( w) ]if (wealth <= max-wealth / 3)# ? s1 g( x8 k( O& h$ k. Q
[set wealth wealth + Low-income-protection ]; w5 t, T+ O8 L8 z" s$ r$ O
end
. o3 ~: j3 H$ y 0 q9 K7 K+ ^9 |# y9 n
to recolor-turtles
# M/ w5 M5 k# } j& P let max-wealth max [wealth] of turtles
8 a: x5 y4 V. Q1 Y B ask turtles. O% i* Q5 J/ J8 W9 ^" v |
[ ifelse (wealth <= max-wealth / 3)
B8 f. k9 u% `) l/ X, x5 a [ set color red ]7 o' U, g1 _9 q; U' u# D" T4 ]
[ ifelse (wealth <= (max-wealth * 2 / 3))
/ f( o7 M1 v& e9 Y! \ [ set color yellow ]8 ~) w- ~ v2 j( {: J
[ set color green ] ] ]8 p& j+ x/ m6 n4 @5 L
ask turtles [ifelse show-wealth?
& [9 w0 r5 b) ?2 p* T* `' j: {! U" Q [ set label wealth ]
4 |8 z4 V2 e, }+ v [ set label "" ]]
. d& Z8 H' ^; P, f" bend" R& G2 a/ ?5 t1 B* @5 @2 n
3 }& J5 `8 h- ]6 @; o' S* hto go
3 b+ a+ u1 G. z$ ^8 o ask turtles, H) B! R- Z; a) Q0 T4 E8 g
[ turn-towards-grain ]
, V+ o4 E6 D5 K harvest
{; E- M0 U0 T2 ?1 \- Q ask turtles' W5 ~9 v& L1 t4 q B8 j
[ move-eat-age-die ]# Y p7 |- t5 `. W3 [
recolor-turtles1 z6 ]7 y) x8 }! o- p
if ticks mod grain-growth-interval = 0
0 i# U7 t6 }/ }. \ [ ask patches [ grow-grain ] ] \: T! Y& `3 z9 w6 X& a
2 F2 l7 @2 X+ j if ticks mod 11 = 0
9 F* b- j* F- v u [ask turtles
( r3 k( L% W d" ]/ q0 ?" t [ redistribution ]]
6 u) h3 N) }* `0 B9 b0 ?" P if ticks mod 5 = 0+ ]2 K: T1 |0 g9 O
[ask turtles$ v) j4 `9 V4 y4 B; d y4 O B# f( j
[ visions ]]* S7 G+ @& I* H7 p V5 P. [
tick
5 r$ f6 E4 J" U1 b# B) d update-plots
( T- P! h9 c$ xend4 \4 ?6 X* U! h J: |5 a8 _
to visions e$ I7 L5 d: T
set vision vision + 1
1 _' ^% A. f! E8 X M/ Xend
2 S3 l) e/ Z' u) N) z
. Z3 H; Z( d; g: ^* d, e% `# n0 o; c- a( G2 _2 O% c V* \
! ?5 N% u& L( b- ?to turn-towards-grain
: R: R+ U- Z6 [7 u# i# ? set heading 0* X5 k! P/ k( W$ L
let best-direction 0# U# f0 j( O- x8 W8 \
let best-amount grain-ahead
4 H4 X2 r' f% Z9 v+ ?' r set heading 90
0 S' A) p9 e% H( U5 Z+ l if (grain-ahead > best-amount)
9 O& F' ~3 X2 o$ _ [ set best-direction 90
3 R2 G) L6 ^3 s* c6 A2 z! U set best-amount grain-ahead ]: G& ~2 s9 V0 s9 i4 h
set heading 180" C: K; L3 ?: _
if (grain-ahead > best-amount)
$ u: T1 H( J; s/ ~ [ set best-direction 180
# X# q' g) M) K% Q! J$ P set best-amount grain-ahead ]
. V! ]2 M! T. E* D) T set heading 270" R$ C$ s! I+ N4 [, q
if (grain-ahead > best-amount)/ A/ T- @! f1 R. e' O
[ set best-direction 270
7 g( l6 Q+ z7 d* u1 f, c. B set best-amount grain-ahead ]" V: ~) a$ s/ E
set heading best-direction
* _+ [3 t: _* bend
! n6 \" e* r. V1 i7 x! Q2 y. g" } C3 d! H# {3 y, Z8 m
6 {8 b/ Q N# Y) `& [+ Kto-report grain-ahead
, }& c% f7 m7 }! ]" k let total 04 z; x" q; J$ _* E
let how-far 1
* k- _! |7 G* O: k repeat vision
0 P! o, v. U o1 c$ e+ h0 Q [ set total total + [grain-here] of patch-ahead how-far
$ C& b8 f) K/ Q( [# n set how-far how-far + 1 ]
; V& ^7 Z( Y8 d; v report total4 P+ N& _) `: u. u
end
1 o! f! Z+ T. ?' @
+ Y) X- a+ B8 L2 [0 Sto grow-grain 3 g# Y4 ` _+ l: ~
if (grain-here < max-grain-here)
8 R4 _7 C. ]* g/ M% B [ set grain-here grain-here + num-grain-grown
9 r! w$ B: v. k6 A3 H if (grain-here > max-grain-here)
5 W+ e3 t' n7 w( o+ d4 T/ h [ set grain-here max-grain-here ]0 f) l' x) N! j
recolor-patch ]8 |' G) F5 u6 n. ], F" E
end
1 k% q* F1 S! a! T9 \to harvest1 P" ~& E; S8 K3 l
ask turtles/ S. A3 S- s4 }/ m+ z9 t. x9 O i
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]7 T5 a8 |; n8 H/ L9 e: r" H
ask turtles1 c! a2 R h4 u* f% Q3 T
[ set grain-here 0
# C; l% h% c( ]/ ^ recolor-patch ]3 z# F# e1 ]8 Y C
0 k$ }, M% C6 R* [, o2 ~
end
- o4 U' |4 |6 K( I3 W: U& J' g* `% z3 R7 v
to move-eat-age-die
( e6 R- G6 W, @- C8 g fd 1
" |9 E: s5 P: h% B% B set wealth (wealth - metabolism)
0 B5 G, s- j. W7 G set age (age + 1)
4 d# h! ?6 x8 N3 W if (age >= life-expectancy), P. j' p4 Q7 a) M" c$ i/ I: y( R
[ set-initial-turtle-vars-age ]) m! K/ j0 `9 K+ C% }, S6 `6 c5 c; L
if (wealth < 0)
9 h: y8 F$ [. m3 y& Z [ set-initial-turtle-vars-wealth ]% U1 ^; f. s" A
3 y# ]; v R; s
end
- o8 J" Q" ?" w5 G" f5 ^/ |3 K* }/ D% M |7 S# y2 r# x6 w
( ]% m; y, s0 Cto setup-plots& H' ]' m4 M F l( ^( Y# {# O
set-current-plot "Class Plot"
# ^7 @: N. ^* ^6 M* a) @ set-plot-y-range 0 num-people
' m R/ Y7 K$ ]: V2 y! c! I/ w# Z set-current-plot "Class Histogram"/ ~0 [) I0 ~: t% c r8 i
set-plot-y-range 0 num-people( I( U) f! N b2 S' j$ M. s
end
1 ] E( l% I1 J( D: d
, l/ @" H6 p3 k5 Jto update-plots
) V2 S9 R0 Y5 B$ Y% z+ B update-class-plot8 `" X4 ]4 S8 h: [( T; d0 l
update-class-histogram7 G1 |4 X: d1 V/ B# T/ Q
update-lorenz-and-gini-plots5 }7 ], ~5 a C" H$ j }
end
6 j5 N6 A; K. z: [1 B" L" A' j/ ^8 ^" B& R2 d& L) r. ~: O# J
to update-class-plot+ n. a1 G/ |$ {, F% [% T5 v
set-current-plot "Class Plot") Y, g8 s- O% N4 [
set-current-plot-pen "low"
5 t. r' q# ?" Y! o t plot count turtles with [color = red]
/ @+ I! }. ?$ _ set-current-plot-pen "mid"
8 |+ p+ U8 [3 w- c4 P5 t plot count turtles with [color = yellow]
/ L6 f! t# u. w( v. C/ H set-current-plot-pen "up"
/ Z$ U, s) W/ B7 o% Y* v plot count turtles with [color = green]
& D) i7 G5 X$ O9 ]$ ~8 E- a; Fend
' f/ n! i0 n7 s' i& a2 S4 A% A; B" N8 S& o6 @0 w
to update-class-histogram8 V: D1 H6 U9 m; V/ f3 U
set-current-plot "Class Histogram"5 Y+ q8 y1 @+ J' O; Y8 S
plot-pen-reset
\6 w K! f" ~# f: z T; f) C# G set-plot-pen-color red
, L; {5 [2 ~3 K5 i3 b# V) z* f plot count turtles with [color = red]6 d) ^" {/ Q5 W' [
set-plot-pen-color yellow: `7 y$ ]5 v) T* \$ N" L8 J: M" o
plot count turtles with [color = yellow]
/ p( m+ ?, J2 Q. D4 }( m3 r i set-plot-pen-color green
& Q! @. X4 N# l, N2 i plot count turtles with [color = green], x; ]% l" f, U2 c) }
end
- X* C- r5 f1 B: Zto update-lorenz-and-gini-plots2 y$ g4 e# t9 e
set-current-plot "Lorenz Curve"
8 x0 F3 G' N/ P" Z" P; e5 J clear-plot ?( D5 P5 t# @& U4 j
2 A& Z, O2 w! B Y% v" t, R6 H
set-current-plot-pen "equal"; W, f. ~7 D! N# y7 r6 ^
plot 0! l0 W y# ^2 g( `3 n' y; t$ T
plot 100# t6 B8 _% z6 o* m
: M* Z/ p8 X% Y0 x
set-current-plot-pen "lorenz"0 L8 P: |% j& }/ j+ Y
set-plot-pen-interval 100 / num-people
. P) i# `3 K% _7 n$ L) B, | plot 0
) ~" R$ i- l2 X. A/ Q) S6 H3 U' i1 v
let sorted-wealths sort [wealth] of turtles- ]0 F1 F8 |9 `+ Y. c5 Y7 o9 \# q
let total-wealth sum sorted-wealths
' E7 m; D! _ g let wealth-sum-so-far 0; T* h8 I3 s1 R0 u6 j. [' {
let index 0/ l% X* w! ^! i
let gini-index-reserve 0) T0 Y- }/ m* ] c+ N" ]- G
/ y( l1 Z$ V- n) f0 Q8 c) f
repeat num-people [& P$ D# s" v) K2 o9 t% ^7 T
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)6 ], T$ C& p, q# P& q% S
plot (wealth-sum-so-far / total-wealth) * 100
. T: ~' }1 J, N$ s$ L8 r set index (index + 1)) I/ Q% E5 c1 H1 o. S! S
set gini-index-reserve8 s) a" W" {$ O' B1 F
gini-index-reserve +( \* H0 e3 @8 I* i F
(index / num-people) -
6 h/ l q6 u4 b) a3 [0 U (wealth-sum-so-far / total-wealth)0 |/ S1 ?2 D- c, s( f
]) G3 \. S3 @6 ^# u: n3 ?. t! {
$ R& f3 I/ ^4 S& e& f( d
set-current-plot "Gini-Index v. Time"% J" ]5 f3 E d( p
plot (gini-index-reserve / num-people) / area-of-equality-triangle
6 o) b' g, L5 U% tend \; [$ U; u) z7 R7 p
to-report area-of-equality-triangle3 ?8 D7 Q4 H S v. \7 T
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)
' m' |6 T8 Q3 u1 B5 C+ Bend |