本帖最后由 GJM 于 2009-12-5 21:43 编辑
# E: {6 k _. g" Q" z9 u& {# f a4 ^1 s
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去8 a Z* B$ ~1 T
5 }; ~& B' _9 [; `4 O( T' A) ]
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
! \6 R( k9 [4 A; ^9 C! E
) R6 |; a+ P% a: o; ]--------------------------------------------; p- \) l2 ?; Q+ f5 T: T, q$ Y
begin P_something arriving
' K5 i( R& Y* e move into Q_wait" x9 W; @6 b! |2 a
move into nextof(Q_mA,Q_mB,Q_mC)6 P* d, F; ~- m+ j" C( H4 w; M* {
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min- G! W4 k' y* D& h9 n) s% D+ P9 [
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
5 K; A% n/ H. n" \+ u* _; }8 k send to die% v1 n- e. p# G$ @+ m7 J8 e: P
end
- y5 {0 g- G5 i! B2 ` q( j+ t6 l. k : y* W- C, ]3 q: X; n
begin P_mA_down arriving% Q8 x: `! M# p0 |( n( I- K) S
while 1=1 do
+ Y+ Z5 c" C2 d3 c1 ~5 f begin6 _# c9 T: s1 w! n
wait for e 110 min. a& m- H7 G7 o% D0 Y
take down R_mA
+ ^* y. R, F+ R; W/ B wait for e 5 min5 h. c1 J, K# l' \1 M; z/ A
bring up R_mA$ H h: I- e( Z( `2 @
end3 ]* K" a6 Q& O& |( G v: y
end
9 T5 r5 A, b; J + |/ d; B( X' x g3 W( s
begin P_mB_down arriving, Y3 k, B% \( V( v
while 1=1 do) j$ k) u) `& t t
begin1 b* ~' W' K$ b3 F& D
wait for e 170 min2 M' o0 R" ^/ y) X
take down R_mB1 @/ l5 T- q% |" _7 ^+ E x
wait for e 10 min6 t6 {6 s! ?" P( \% F; k
bring up R_mB- o" v" G# D% e
end$ R' A" t$ J7 ~
end
2 y z6 v. E: W! J- v& z8 G
( `. W$ ^) i+ Sbegin P_mC_down arriving
4 A# W* q4 x9 J while 1=1 do ' m) }+ I0 P3 l t4 D
begin. u" _5 i% B( M, Y
wait for e 230 min6 u) G" t6 X3 X
take down R_mC
9 A O7 r: M, S! s2 f" s wait for e 10 min
. i' \( _% k! u% Q. F7 |1 o bring up R_mC* g0 u- C1 |* M1 h6 {. ]. I
end
& ^; b, d! N6 ?: @/ _7 zend' |3 Z0 ` x5 B7 e" O
" F: t/ g. F4 d
begin P_mA_clean arriving3 P. [0 D3 }0 A' W
while 1=1 do H5 q( x) t8 z" C
begin* h5 y" q3 V1 ~ t7 s
wait for 90 min
+ O) ~, @5 m7 f, ^1 \ take down R_mA- o/ q: J2 {, i
wait for 5 min& C; P2 n& p3 h7 {2 X7 n+ {
bring up R_mA+ w) M, y. O0 E
end
F0 ]- ? F% { V# ?) p% zend
6 ^; |9 z! B- Z3 n! C) k) k ; J; @# r* [* C
begin P_mB_clean arriving
. m6 @1 j# a: C+ U7 |9 C; }6 |: Q- P1 h while 1=1 do
% c& A1 Z9 E' X9 T0 f6 G* ]- j begin/ R' Q3 @% l0 i+ C
wait for 90 min* X; ~! @) z5 \2 p7 Z
take down R_mB
. c; {$ u3 g2 B9 j: u wait for 5 min+ {9 v. ^, q* K& v% O- w
bring up R_mB
" g6 y. o' e5 {2 G end2 v- l: d3 W/ D# O0 q
end# {- r) O: }/ q T% g/ M
, S8 F* ^3 j- z0 H) Rbegin P_mC_clean arriving
4 {; c/ G8 V% f9 Z while 1=1 do
6 }8 Q- P6 F/ k% P& h3 y begin
- m! O5 b" o5 h7 i wait for 90 min$ \( G& @0 m0 P! R5 ]* _. @
take down R_mC
5 q; p6 J6 y/ \; a5 ~ wait for 10 min
) g% E, O4 ?- c: ]! M/ w bring up R_mC
; u2 U1 e* i- G+ r end
8 g4 q$ W& [7 ]% Xend
2 u( i7 b6 c+ a& p. z----------------------------------------
& y( S3 N% C+ I8 |; G9 ?, Y' u 2 r0 }. `5 C* F' u
Exercise 5.9
/ Z' Q/ u0 D1 w& t I# K" J7 R; z" P& H3 [
, |' e7 s% x9 m6 r o0 zCreate a new model to simulate the following system:
7 y/ y- o: ?- u/ {- ~; TLoads are created with an interarrival time that is exponentially & l5 ? U, k7 X% A
distributed with a mean of 20 minutes. Loads wait in an infinite-. \- b7 d8 e$ u, C) T% B+ z
capacity queue to be processed by one of three single-capacity, . x4 }$ `5 B/ {; e2 g5 _. O: C
arrayed machines. Each machine has its own single-capacity queue 8 F& U0 {" P. W
where loads are processed. Waiting loads move into one of the three
$ m* o4 ^* J6 J, [queues in round-robin order. Each machine has a normally
9 x& `( h" h" X; l, x! o& t: Tdistributed processing time with a mean of 48 minutes and a standard . P2 F# W' Z a( F7 b
deviation of 5 minutes.
; {6 Z; X% s" H( i! h, Y' }The three machines were purchased at different times and have
4 v. K, s @2 R) i5 X; q5 Ddifferent failure rates. The failure and repair times are exponentially 6 Z4 o% |* R( f% S8 C
distributed with means as shown in the following table:
8 O2 E! o1 b& r) A- A5 M5 ~/ T1 GNote The solution for this assignment is required to complete 2 j$ k( h. J& a5 T
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of 7 {4 t. N& c* N- H7 V
your model. * `% C7 A; |% Y: B9 B
8 ~( S) ^0 i C& ?% q
MachineMean time to failMean time to repair9 K3 O$ Z K5 T2 w% U# w. u5 Z0 m
A110 minutes 5 minutes, C! L% D9 r7 y: f9 A7 T
B 170 minutes 10 minutes3 Q4 x/ }) v ?( k
C230 minutes 10 minutes
- R0 i2 H w3 w) B$ W& c( B! s0 {( A* q) C3 S/ X. h; x9 g
The machines also must be cleaned according to the following + q3 j8 n1 x# E7 C, v
schedule. All times are constant:
. F, Q) N; ^8 }2 Y D
& I' }7 E0 X1 N8 UMachineTime between cleanings Time to clean
* s$ h I* ^6 I3 QA90 minutes 5 minutes
2 m5 |0 a6 h9 p O, R6 E) wB 90 minutes 5 minutes
" u0 j9 l0 v7 a) A& a5 N# r3 J7 j7 @: d2 fC90 minutes 10 minutes
/ L) ^6 P& Q+ D9 T7 Q
9 a+ M# X5 P* kPlace the graphics for the queues and the resources. : G4 V1 G$ Y3 A
Run the simulation for 100 days.
' h! V3 k6 s1 nDefine all failure and cleaning times using logic (rather than resource ) X% I$ V8 p/ @
cycles). Answer the following questions:2 ]" x4 q% H% r9 o5 [( k& t
a.What was the average number of loads in the waiting queue?
3 J7 n. a. [! W' y1 M. F* M- B( w& hb.What were the current and average number of loads in Space?
! ?+ v# T z; O5 S& ~How do you explain these values? 9 ^; N1 \' O) M
|