本帖最后由 GJM 于 2009-12-5 21:43 编辑
! d, z7 j- k# `% ]1 `9 w" W8 }6 l8 k3 u- ?
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去. ]. ]2 B3 B) O& U
5 ?. @7 f0 r( x8 y9 _不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
5 a# B* C5 Z* M9 T4 D" M. l2 ^
( H9 }5 |* g$ ?6 l# S i. w--------------------------------------------
- c# h- @" i4 S8 |" K; jbegin P_something arriving
. o% [/ B: I: H move into Q_wait+ [% E$ Y) ^" z# r3 ^$ l
move into nextof(Q_mA,Q_mB,Q_mC)
1 E% A1 R C- V, B6 ?" q use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
4 T# e% a& {( O1 ?0 w2 T$ A send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)0 ~% e& k9 i( o* l
send to die7 s8 [. J/ \% U
end# ^0 x) ^( M2 \3 [0 `( }
3 {2 O, v0 b* a# Q: V! M9 e
begin P_mA_down arriving# `: A( N( q; g; Q1 ?
while 1=1 do 1 i/ G+ z- r0 U( \( S M7 G' D+ C
begin
! Y4 ` W6 C2 ` wait for e 110 min
- A/ I1 U, X( m0 b take down R_mA
1 l1 N- ~: @( o- O wait for e 5 min
# d9 N8 q# @. c$ N6 M bring up R_mA
& t+ g; }: A- w. R$ ~9 q$ e6 t end
4 h4 R% c' g B/ A' Kend
5 B. Z+ u, y$ R; I; H ! a( f- L& u. ^, x
begin P_mB_down arriving
" P8 D* W( f' W3 n% }2 @ while 1=1 do& W) I5 h' Z# F [
begin
6 q4 Y9 S, V' `* ?; g wait for e 170 min
3 ?! h' f5 Q' c' ?# k( a5 P+ @ take down R_mB7 D( {: H' q0 _6 P; ?
wait for e 10 min7 k# q9 s) [, K
bring up R_mB M; x) B2 @. D- \
end
2 d4 B' s& u1 ~6 ^8 Uend
. s' |1 } P9 w' J, f* J4 a& v( S8 v9 J 8 `1 n$ X. G8 y5 ^- K' w
begin P_mC_down arriving
5 z n$ w3 w: v2 B" T6 g* C4 x2 S while 1=1 do
2 W% w$ Q7 I, Y/ L9 f x0 ] begin) k6 V$ y1 w* g% [$ ~
wait for e 230 min
0 d9 G8 ]' } ~. }9 `5 m take down R_mC! G/ L4 e* ^1 K' E
wait for e 10 min3 Y7 L4 ~/ F6 b* ]5 f
bring up R_mC
% X$ ~2 {7 ]; u: N5 Y end
6 q* ]0 o+ A, ]5 c, }7 uend- V! _8 E7 T* \9 o ^6 i
( t& ?1 J( v( U, P4 kbegin P_mA_clean arriving
4 p2 ^9 }7 e( q% u while 1=1 do2 E" F8 f# }$ n
begin# `% k) A$ |$ j) a. @+ ^
wait for 90 min% Q9 X: ]# M! s( r8 M y# L; }# _- n- q
take down R_mA0 b1 c$ G, B( z; M9 ^7 B
wait for 5 min4 x! ^7 m; C4 D0 D( r& d4 i' a
bring up R_mA
/ I2 W8 [ Z# d1 }# c end! Y3 L0 A. `' y# R* v9 X! z
end* W7 t7 V5 R9 X2 t
4 W+ g9 g7 u- f7 M' c$ u Kbegin P_mB_clean arriving7 b6 J2 Q4 J# e( o
while 1=1 do
6 `5 g* U' E1 ?5 H; A: s2 V+ @* f begin
$ c' S' V$ o0 N; o$ f, o, o wait for 90 min3 Z5 A2 u6 w8 ^
take down R_mB% C. |: t' B$ Y* r& @" T6 f
wait for 5 min+ c! ?- W, E) |, T8 _
bring up R_mB2 `6 Z/ T3 v5 G) _+ {
end
7 c2 s7 ?, h1 n |end$ Y& x+ x4 ^, e* X+ ]
( X& @/ ]* r9 ebegin P_mC_clean arriving4 W" x7 J& g2 b I% S5 H- Q/ L4 E
while 1=1 do
; L$ j* Q- g! c begin3 g v6 p3 |' [& |, Z) P4 E
wait for 90 min k% Z5 q7 J/ ]4 A+ f6 h m) C
take down R_mC% z: I2 u( C/ n* @
wait for 10 min9 g7 y* e0 b4 t. H& v$ S" M6 s
bring up R_mC# U3 n' j! `# `2 z4 S
end& W6 G ^2 f* ]- X' q: B& g
end
1 y7 [' n, u# b8 G, H----------------------------------------
" [5 r# S% |5 @% v* d6 N; j' R3 M " e' n! ^, u* d4 h4 }4 J8 N
Exercise 5.9! K3 y# _. A/ p
- }0 X% D1 _) Q2 U; z2 [$ J, p, q
Create a new model to simulate the following system:
: e) O" v6 p5 rLoads are created with an interarrival time that is exponentially ) W7 {7 |# l, j+ q% d' t8 N
distributed with a mean of 20 minutes. Loads wait in an infinite-8 Z2 j' _' F( j
capacity queue to be processed by one of three single-capacity,
# }+ p6 a1 u7 zarrayed machines. Each machine has its own single-capacity queue * M- W0 p. c' R4 ?7 t+ b
where loads are processed. Waiting loads move into one of the three
9 S0 G7 v5 J/ |8 lqueues in round-robin order. Each machine has a normally 9 l# u$ g8 m! W4 O
distributed processing time with a mean of 48 minutes and a standard ; c# Z, E, ~" D
deviation of 5 minutes.
* k) }4 J3 O/ b( M `5 @; d* h. mThe three machines were purchased at different times and have
/ V( j& R( u# C7 S( s6 }different failure rates. The failure and repair times are exponentially
2 [8 n( ^, s$ P! j0 w4 z. _distributed with means as shown in the following table:
- G4 g3 J2 T; i1 E1 N# G" n2 v. eNote The solution for this assignment is required to complete
# e' @1 U4 w6 A; O: g$ xexercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
4 f7 n' ~; g! h( k! E* Zyour model.
) c' t+ k3 \/ Z' x* y$ v
* y: K% @! P( m& A' nMachineMean time to failMean time to repair
& f: v" |5 ?1 |+ bA110 minutes 5 minutes! U4 L. o1 L* A* U0 I
B 170 minutes 10 minutes! M0 `5 L7 _ v" t( q c0 _, o G; t
C230 minutes 10 minutes
% U+ V/ Z4 Y: @; j% }! P& _2 P7 b, s+ c
The machines also must be cleaned according to the following ' b2 r& x7 n* ]+ O% \+ F$ W! V) A
schedule. All times are constant:
$ v% K1 [2 Y3 b' U. R) [! S
; a- o6 |8 Q6 ]9 [- QMachineTime between cleanings Time to clean
- |% e8 ]& k5 n! \5 hA90 minutes 5 minutes6 q9 q' t6 R" l# r! d8 n, X
B 90 minutes 5 minutes! z- r4 H5 Q* I+ `: W$ N5 H
C90 minutes 10 minutes
0 [& [8 h& R0 r% K/ n# q) b8 X _4 X9 [5 }1 r
Place the graphics for the queues and the resources.
8 J0 B5 j3 X8 n% s9 yRun the simulation for 100 days.
) R+ Z' Q9 R- o) ^* V1 sDefine all failure and cleaning times using logic (rather than resource
) ]9 B* P/ q5 F' K+ vcycles). Answer the following questions:
7 }/ `9 X0 u7 ]# w% N2 z* J; o! N) ja.What was the average number of loads in the waiting queue?
9 l4 u. L# W. _6 [b.What were the current and average number of loads in Space?
0 H8 c, |, t+ C% @1 p; gHow do you explain these values? ) S( E1 ^) K# O3 I
|