请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现6 G5 ^% C/ D( y5 W4 c _8 |5 {
globals
% U: Q; m7 x0 \9 j0 Y: W& }9 U5 u[0 {' O3 }9 C7 ~% S/ _
max-grain , K+ g& U- B/ Y; |0 f. t
1 [- ^- ^; a5 c$ v$ r4 ^]
x+ U. W& u( t" a! x
7 I: E- S# C+ I0 Q6 Z0 dpatches-own% j4 p2 m9 D9 Q& z
[) B: A: E, v; U3 L6 P6 \. j
grain-here . N+ E t. M) p. L
max-grain-here
* O- S/ n& C$ w: S# u+ `& p]( n* E0 d; J3 C0 `, q* }9 }! M/ H
5 l! X" H) O$ Kturtles-own
' |6 X/ i( _* P z" O[& k' ]% k6 q' ^( Q7 a2 V
age
" p( N% X; T5 R" W; O4 j8 e wealth
8 m8 m; z! o, O" t" L. u7 d life-expectancy
6 g9 R8 C6 z; X metabolism
; l2 Y9 C6 K- _2 b% f4 m vision# C' z; F8 L( R9 @- H- S- M/ R6 e% Y$ W
inherited " M5 _; D) M$ z* X3 j8 Y
]
" ^4 f O; Q- S: A1 B# _5 S6 Y/ }" Q6 c
% W8 Q9 ?5 F$ k# s# [' [
to setup+ H! P5 u: k& \# Y
ca) ` Q$ r, D E
set max-grain 506 s8 A" }- k* Z
setup-patches
1 n K3 n/ y; A( q setup-turtles
+ o+ o6 `$ S: a' H) {: l setup-plots
1 P; n+ C M) W. ? update-plots
) A. }% B; D, O2 E1 s+ xend
m7 e' W9 Z% {: Z' @8 D/ H8 mto setup-patches$ {5 u; O" w6 f
ask patches
9 P3 y( Z# w! z" |9 \; F2 | [ set max-grain-here 0
6 j$ V; j9 w; a$ V4 U if (random-float 100.0) <= percent-best-land$ U) ?( w4 ]9 u6 j
[ set max-grain-here max-grain
) o d: q8 Z1 ^1 L7 l" h; f3 r$ I set grain-here max-grain-here ] ]6 \! }! }; n7 m# b
repeat 5- z- T8 L1 K% y, k8 }* H" h9 `$ w
[ ask patches with [max-grain-here != 0]
- d/ B3 u. w. ~6 ^( v4 U [ set grain-here max-grain-here ]$ y9 {5 X' H; O1 x8 M/ [* o
diffuse grain-here 0.5 ]
* A: x6 R* i" ^& p: W repeat 107 ^2 X/ p" j. ] r# k1 [
[ diffuse grain-here 0.5]
9 b% K) E8 l+ A2 c0 u8 b ask patches) Y# ]1 | X7 c' E7 P6 u, j7 }# b
[ set grain-here floor grain-here
9 m" _) ^$ M* ~$ D set max-grain-here grain-here
k7 k- v: |) T% ~4 R recolor-patch ]
+ n' D6 T4 d- Lend
1 B0 x0 u! U, P2 \% |to recolor-patch
, w2 \% B0 l. X0 W; S/ i7 ] set pcolor scale-color sky grain-here 0 max-grain
$ I( \3 B$ y- wend1 m9 T8 f! C: M7 D% h
to setup-turtles
3 f9 |& l8 X# a9 z* l% r; c& c set-default-shape turtles "person"
' j7 I$ Q0 q$ X2 v' o0 u3 ` |4 R* d crt num-people/ G- v! c; \ W( K7 l/ D
[ move-to one-of patches . |" U* E* l. {1 \8 C3 N9 e
set size 1.5
6 D/ l8 X5 M" K0 ]! s# O, Z9 Z set-initial-turtle-vars-age$ v6 n9 K! m" B5 O* ^' d5 x
set-initial-turtle-vars-wealth
1 k; E) G+ x# C set age random life-expectancy ]6 j v9 n2 {' D; ` s- o
recolor-turtles8 r; [9 V6 Y2 P. b; a
end
& X o& l' Z8 T* |0 E W: C
1 X8 g, Q5 t3 f% b6 M6 K# _to set-initial-turtle-vars-age
* i/ [4 t/ y& c9 R let max-wealth max [wealth] of turtles6 U; ~0 Q5 d6 `. ]( G
" c8 y" t% {! U* K$ n+ z" `
ifelse (wealth <= max-wealth / 3)/ O" o+ \; J8 q; [$ \
[ set color red
( C- V" s. a7 Q( V& N- m set age 04 Z6 T+ ~9 T6 A$ H
face one-of neighbors4 : X/ k& r! X+ w8 F
set life-expectancy life-expectancy-min +* P; d: Z5 K( k- l3 p
random life-expectancy-max
. \: Y" _( y$ ] t/ _" a set metabolism random 1 + metabolism-low& B# \' ^4 q: j
set wealth metabolism + random 30
" B% q7 y) C/ c9 U set vision 1 + random max-vision6 r. K* `$ m6 x4 A% o3 v
set wealth wealth + Wealth-inherited-low ]/ w5 O6 Y9 U+ ?7 j: b0 @
[ ifelse (wealth <= (max-wealth * 2 / 3)): L5 p' s( @8 l: `3 x/ Y
[ set color yellow
$ E$ I- a: K7 e! K7 j set age 0
# }0 K" c% f! h face one-of neighbors4
/ s6 O3 e. @/ s% y2 I set life-expectancy life-expectancy-min +- ]8 W9 h/ z' i/ F% ^9 o% \
random life-expectancy-max + 1
. D# |3 K( y! _4 [: @; ^- u set metabolism 1 + random metabolism-mid$ A1 P8 C1 u$ |
set wealth metabolism + random 30
) A' P2 Y- s. A* s0 Q8 q' E set vision 3 + random max-vision
/ i. h+ _6 a1 S. R& K% l set wealth wealth + Wealth-inherited-mid]
g4 I* ?/ |( S3 _1 n [ set color green 1 H# q; l) R! I9 y% X8 ]6 j+ R
set age 0
- Q# U# V! m d face one-of neighbors4
) u2 U8 d8 y3 m* _6 P$ ~/ _ set life-expectancy life-expectancy-min +
+ \0 x' q) I+ @- l: A. x X6 ^. ` random life-expectancy-max + 2& _5 Q) }( c" X& M9 y( z
set metabolism 2 + random metabolism-up( L- m' Q) m* m& w( [& T; c
set wealth metabolism + random 30$ m( G2 T; N; m% I. v* z c
set vision 3 + random max-vision
/ H/ p0 I5 a) k! M; N7 H7 p& ? set wealth wealth + Wealth-inherited-up ] ]
( B! X! b+ A$ k- `' c7 a% j B - W3 }' W& q' T7 I7 x
end
4 X8 M( N7 Y, `4 B; j& pto set-initial-turtle-vars-wealth' H& U& o6 Z7 W1 ~: }
let max-wealth max [wealth] of turtles% v3 B" y( T, q3 n3 B3 j# B5 z
set age 0
2 O" A$ j; t* m% q. ?) A" t face one-of neighbors4
3 _/ c! s7 Q. y* {0 l set life-expectancy life-expectancy-min +1 ?1 ~# j: f3 n% X5 d0 `! {, T4 O4 G
random life-expectancy-max ( p& A; }4 Q* T6 A6 ]
set metabolism 1 + random metabolism-up6 o/ U% R% X# c& p) g
set wealth metabolism + random 30
1 U/ ^% M$ e: v$ D set vision 1 + random max-vision
' [, m! J" x5 U! [& zend
) b: Z! L, v& K& [/ }to redistribution
! g8 ~. a. ]: z6 clet max-wealth max [wealth] of turtles
* l! o6 ^2 i; X( y7 J1 D; Klet min-wealth min [wealth] of turtles
% i3 g: V! C h- }" Sif (wealth <= max-wealth / 3)
- Z. D% _; m6 q4 N- k! V [set wealth wealth + Low-income-protection ]9 d' ^, v* i; K) D& r
end
; E1 U. I8 z& r/ ]+ R4 v 9 T6 |, k! ~' W3 V( {# L
to recolor-turtles
6 A, _/ ?) N4 l$ c6 t) r, S let max-wealth max [wealth] of turtles; d. `. P+ z6 n8 N
ask turtles
! ^! r: r( ]# W/ { [ ifelse (wealth <= max-wealth / 3)- y' c+ N; w0 t/ {
[ set color red ]: j0 V8 b9 b+ `* J l) u9 ~( a+ C
[ ifelse (wealth <= (max-wealth * 2 / 3))5 o- |4 p ^9 H" p" p5 T
[ set color yellow ]0 y9 f5 v( p4 M' W- L% u7 D4 O& D
[ set color green ] ] ]
9 x3 B5 y$ `; |, s( W- T ask turtles [ifelse show-wealth?
; w0 m" x, G% F, M [ set label wealth ]
8 X9 ]$ W- t J& K [ set label "" ]], I2 U9 G/ t- l) B& k$ o
end
# _/ e! G" R, ^: y4 s' d3 A1 Z% O, s# ?7 K7 ~1 N
to go* r( p! P9 q: d& b
ask turtles
- h& z8 l- c/ g [ turn-towards-grain ] 1 d7 Z* b5 p$ E9 A8 ]+ n
harvest
: L2 s) V& A9 }, Q4 f# T ask turtles
# ~7 k% B! g& V; s- q5 c' j) Q [ move-eat-age-die ]0 M8 }) Z* J2 r3 o" J }7 ~
recolor-turtles
& b( i( }4 Q, f! W/ s if ticks mod grain-growth-interval = 03 _* d2 ?! x# l/ ?+ W
[ ask patches [ grow-grain ] ]
# k/ Q2 p- F/ e; N6 D6 r
% D( U+ q) M0 f if ticks mod 11 = 06 f, _0 x) D' M% Y0 U) h" z
[ask turtles
- g$ E; ^% }: B! [ K( V2 ~ [ redistribution ]]
. r( X/ q- `0 s if ticks mod 5 = 0
& b& T* P% W4 c: A7 T; q- { [ask turtles
, h7 g+ z! A% V) ]6 S [ visions ]]
$ M/ R0 Z) U3 J! g tick
j, w% ^ H0 L9 s" g update-plots8 m( s$ k" n6 p1 l4 M8 d
end
5 k% z" n. x. q: x' Lto visions
1 m2 D y4 |: O set vision vision + 1 $ Y/ | v6 W# [' t; |" W2 {
end
; Q2 Z; o& G5 g: Y0 I$ U
1 P( E/ W$ q s8 v& g; m
* s0 N5 {1 u: x& e- e+ G2 C" K' _* }% f& ^( d
to turn-towards-grain
# ?& f8 M A+ E" E set heading 03 S# K/ b& b9 t. s8 |0 g" x1 C: R
let best-direction 0
5 p2 C* y' Z$ r g( i, L& ? let best-amount grain-ahead
: T4 J5 p j# o& [% S# [$ O: T) Z set heading 90
: |' E- J Y |- G2 j9 h* ?- k if (grain-ahead > best-amount)9 ]. z% h+ B& g2 e! {
[ set best-direction 90; a0 c) c B: B+ v/ c/ J) _+ V& J' E
set best-amount grain-ahead ]4 _8 E" U# a* R8 s4 `2 s# i4 x
set heading 180" h( x8 X8 H+ F# F& m" v
if (grain-ahead > best-amount)! R+ _8 q: H4 R
[ set best-direction 1804 T+ L. h" h0 b" J% G0 i2 n i/ |
set best-amount grain-ahead ]
- K5 Q% h; K' h7 ~3 o set heading 270
0 Y! Q. F% Y* i; v* H/ }- K( J. \ if (grain-ahead > best-amount)0 t. ?7 o( |4 G% ^9 g; |
[ set best-direction 270, a/ r0 k3 k. \) T4 i$ t" E
set best-amount grain-ahead ]( @! b8 k9 @* Y
set heading best-direction
% E- U- d3 @0 }7 Oend& B4 q/ y" i8 `
, n1 y u% @2 }& }% Z
# ]" H& C, K& P/ R* ]# ~
to-report grain-ahead
$ a: M/ O/ p9 T0 s8 o4 J let total 02 n. e0 V$ J7 A g% ?' Z& {
let how-far 1
* T$ g; e) E5 l. b2 O! f repeat vision
$ Y: P9 a- j/ ?7 K [ set total total + [grain-here] of patch-ahead how-far( a% [! J$ p- J
set how-far how-far + 1 ]) Q' y& C+ g' S& N( J+ [. x( P
report total
: q: f7 ~3 U. O+ l" Xend" { ]0 X8 n# z1 I* P# x: q6 y0 j0 Z
' v w Q5 p( h3 [" ]/ G& Pto grow-grain
1 i8 j: m! {# q& K( o if (grain-here < max-grain-here)& }+ [' A, L2 Z4 J' }
[ set grain-here grain-here + num-grain-grown
% v- A6 ?' p. {) @1 | if (grain-here > max-grain-here) 0 l& i4 E5 I' m: S& i
[ set grain-here max-grain-here ]
. q/ R1 j m9 p; v. M2 \ recolor-patch ]/ F0 |/ Z7 c5 G
end7 S9 `# f$ y6 ^ ?- r# C
to harvest) N/ c0 e- b* E% y: T
ask turtles
7 z* J, R% g/ a" ~ [ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
- O) n; o2 P. ~/ q6 K ask turtles( o4 b1 v! }" f
[ set grain-here 0
" b% y9 c* _7 V T2 ~6 ^" ] recolor-patch ]
8 t) Y% X0 C; c+ r: E
& v/ a( O [4 A* Y% P& P9 H4 Y9 @end& }' C- N' k, F; ^1 _
( O( p* J. X0 Hto move-eat-age-die 7 T) @( Y, L' ~) S+ u2 V
fd 1& {& @9 Z* z& b. ?- G
set wealth (wealth - metabolism)0 H) J6 t- s a" S+ ]
set age (age + 1)
/ ?) T h$ t, o" z1 }. f6 j V$ U if (age >= life-expectancy)
; T# D h" ` T7 o* J [ set-initial-turtle-vars-age ]
5 [) I5 X* i/ A9 x Y9 {& k* u if (wealth < 0)
1 U9 F2 I4 e% Y [ set-initial-turtle-vars-wealth ]3 M# x4 N! @, r; \) {: y9 R: `8 E
* u s3 e" F) f$ M# _) q
end4 t3 O8 ]- W$ P* T
7 K7 w2 n6 @$ V' r& C7 G! B: m0 r5 K: |& X; M% J O
to setup-plots
4 i9 J) t1 c6 x4 l5 X( l# _ set-current-plot "Class Plot"
0 `+ g4 @9 S* w/ D$ ~2 d set-plot-y-range 0 num-people
G7 a8 b# {/ y9 g* N( y) m/ e set-current-plot "Class Histogram"
0 N. g- B$ l! Y6 n set-plot-y-range 0 num-people
. J& }2 p3 C* Eend
' |7 v3 {) q4 I6 t1 {" e' Q7 \4 t9 ^6 u
to update-plots
% T6 Q/ W$ I# i update-class-plot
" Y! c) `0 X8 } update-class-histogram
. e' b/ X; v; @) F4 c* y# o3 C ]0 C update-lorenz-and-gini-plots9 o4 ?$ H7 ~4 o1 _ U# i
end; a7 }" J9 {% Y6 H
, {1 U0 ` {- s: x- \3 {4 uto update-class-plot5 B2 E/ `: f; W9 [2 h' \: A x2 T. _
set-current-plot "Class Plot"7 c7 K7 y i2 M9 V9 |9 f
set-current-plot-pen "low"
& j1 @1 o9 N* H$ E, J$ o+ @ plot count turtles with [color = red]
6 }$ f! F% C1 d/ B" c+ u @' n0 d2 P; } set-current-plot-pen "mid"
* a( o w; }6 M2 ~- ~% q plot count turtles with [color = yellow]8 ^& _2 W- L" C% E; k. _3 }1 e
set-current-plot-pen "up"! V* D1 S1 T0 e I+ E
plot count turtles with [color = green]
4 d9 {- n) P; [& c1 ~4 jend" V% c" z1 h% ?3 M; _7 D* ^3 c0 n
. U* r( q3 }( \ q2 z3 |- @, Lto update-class-histogram( d% }& H5 I5 J/ V
set-current-plot "Class Histogram"
: e% |& z0 t: ~9 P/ t7 @ plot-pen-reset
/ [0 K" A. u- H" T- l set-plot-pen-color red
% j8 K5 N, a! J5 P% X plot count turtles with [color = red]/ B6 q: O8 a( m/ u
set-plot-pen-color yellow: l4 C2 `9 C6 z# c7 Z5 H$ E
plot count turtles with [color = yellow]
6 O) l7 A7 Q: ~" n5 c2 { set-plot-pen-color green- ]) L( U7 `+ C+ C$ f6 `
plot count turtles with [color = green]8 M& B8 ~8 w" S! s4 y
end
4 K& ~% L. Q; }0 R/ n+ dto update-lorenz-and-gini-plots
' Y6 u5 s! x2 Z3 p1 l- N set-current-plot "Lorenz Curve"
) k I- w& D4 H o8 t8 D$ C6 }4 _ clear-plot/ r0 D9 g, M3 I- U, Z
& ~8 S$ c7 S U& [0 ]: L8 [6 r set-current-plot-pen "equal"
0 `! R& N, X3 N1 z plot 0
9 X8 n5 w8 D. s8 K; z: B% f plot 100
+ `& e5 v% l# X" l* H" o- [& y4 q8 m# A* n2 c
set-current-plot-pen "lorenz"/ v2 z- A7 V, ~2 w- ]
set-plot-pen-interval 100 / num-people
5 E% l! Q" @+ f1 H plot 00 t% H- L. c/ b8 w
" D y: y( k6 v let sorted-wealths sort [wealth] of turtles
4 `# {9 H+ z) d2 O. m, w let total-wealth sum sorted-wealths9 o A8 b% v8 Z& E1 e
let wealth-sum-so-far 0
& p9 h* a/ s$ S' ^7 A5 W. p let index 0: i) \- y. ~8 q6 g: A1 P6 X
let gini-index-reserve 0
4 I! W# L h% l* |; C7 w9 \) x& f* v' T) o5 }
repeat num-people [. u' C) R7 Q2 @' h: b* J
set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
4 U3 }/ E T) H, I- l, ? plot (wealth-sum-so-far / total-wealth) * 1001 s4 e" ^4 U; v7 X
set index (index + 1): w/ Y: c) V: U; J0 B8 y, O
set gini-index-reserve1 ^) H& }8 h5 f$ ?) p: f& V+ @1 q
gini-index-reserve +, p3 B4 `& O9 S( }
(index / num-people) -. Z7 y: b' b6 I- Y/ n8 _/ ]$ {
(wealth-sum-so-far / total-wealth)1 Y( w) g% h) ~. t) {, B3 ?# Q
]
% w2 X! j2 J5 ]0 e/ D+ Y/ w4 D! z! B) E8 L9 }
set-current-plot "Gini-Index v. Time"5 d7 N) m; s( W
plot (gini-index-reserve / num-people) / area-of-equality-triangle( |( o& ?* A0 k7 y
end
4 A/ r3 ^$ Y" e; k2 Sto-report area-of-equality-triangle# V+ ?( P# Z& Q4 v
report (num-people * (num-people - 1) / 2) / (num-people ^ 2); t K$ d$ ~! U% d* z& S
end |