本帖最后由 GJM 于 2009-12-5 21:43 编辑
3 h# x5 }. ^% X% m4 s M/ G9 W4 {8 G3 P/ x& R) ~3 `
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去
& d. ?+ V5 x' z8 m0 H/ R/ y+ c7 s4 _% V0 W
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!" ]- t. U" Q0 \7 z0 J+ f: I6 t, e
, S% i5 X* ~+ P' K3 @/ v" S1 h
--------------------------------------------
( Y |7 K; D' l E Q7 Tbegin P_something arriving
7 L* p9 Z5 [3 ~: q: a s move into Q_wait
3 s8 g8 e7 ]& ]3 N3 I3 O& F move into nextof(Q_mA,Q_mB,Q_mC)7 \* I% k3 C1 Q; |& T l5 {
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min! D& I4 @4 [. S1 i
send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
) ^/ @; t8 }3 ^" [" z send to die$ Q$ s. \8 X4 L" k' i1 }9 Y
end
1 f5 P( m' L1 g" o: H* [* l+ N8 Z 2 [- H; A/ n. N% ~9 a( X
begin P_mA_down arriving# H* g5 B2 O, v/ x' _5 T
while 1=1 do & p4 ^6 ^0 T7 k
begin; _' G2 \( S/ \6 v1 f! H+ r
wait for e 110 min Y) L: p0 @5 p
take down R_mA3 z& @- f) r+ q% y
wait for e 5 min+ A3 p2 D1 l% _% L" ]- F
bring up R_mA
$ ^% u2 o+ e! l3 R0 P# y end$ ~- U) g. ~6 j
end& H! k6 c& P* x2 u+ ?* y
$ e: }! b# d& p L' n) z0 ~begin P_mB_down arriving
: V2 q; J3 ?0 R: s, s W while 1=1 do
5 i; c. _; ^3 _7 `$ E# _3 j6 F% O begin
6 b! K, K& _4 r+ z) N" a, U8 x wait for e 170 min" d$ w ^# }8 o( B# @% E* L
take down R_mB( s( R3 V( K: b! ^- F
wait for e 10 min
& {8 K! W( s3 f% J; \! p bring up R_mB
9 G# g9 K1 l- u3 P& ]! W0 s end' l4 }1 H! X S) ^
end1 T! Q; b; Z, {: u
6 j+ y( S: A; G3 m$ {
begin P_mC_down arriving
0 _ i9 x5 t: c0 c2 Y while 1=1 do
$ M8 ?! y" o# F. k3 z* F; j/ n begin
8 D* B4 m8 D2 g wait for e 230 min
* T' C a$ e5 p: y8 _ take down R_mC/ u: _* `8 C- }3 ]
wait for e 10 min
/ L+ E$ g% j$ M; @9 p bring up R_mC6 ]9 X( O# l! t0 `, L
end9 P& V$ G& v5 U, ~# d* P! G
end
6 [: g: X' p+ Z2 f1 C5 k* M6 P : ~1 }) }" [" @( U7 m
begin P_mA_clean arriving
: X! W& d1 B# l' M6 f while 1=1 do
4 {; u u( ~' l begin
& V5 Y+ \& |/ J* S wait for 90 min
4 M- b$ J6 _9 ]: U0 k& c, @ take down R_mA! U- `1 K% B [8 m
wait for 5 min
3 ^ @' ?; U" u- _" j bring up R_mA3 v5 ?& R+ l0 t
end$ \: m$ D; t) e" ?
end
( T1 N- \. Y+ |/ H# y1 R6 } # r H: y2 O t6 |& p! K
begin P_mB_clean arriving2 y! i5 Q9 K. A# z% u
while 1=1 do$ d4 V! g4 E4 W Z$ k1 A( V/ F
begin. ~6 \5 Q/ G8 L' z8 B
wait for 90 min0 l% o: c/ V: _9 O6 p
take down R_mB! A! P0 f$ Z7 W% u7 |+ Q: v) E3 I0 `
wait for 5 min
E! q5 h3 b! Y1 v' P8 o) l bring up R_mB
5 y6 S) Z% x" x7 }9 F end2 x- Z5 x/ X+ D
end, n; w- `( }/ t6 d) T
' B5 d) t& {+ X4 Y
begin P_mC_clean arriving; V4 j) ^" g: `* h3 v/ p% T
while 1=1 do. g" c) @% m7 U- G" E
begin- u4 k; G3 W+ N
wait for 90 min- v, `5 P3 \( r( _
take down R_mC' ~6 k `7 [1 U2 Y
wait for 10 min& H& O- v! w) g9 M4 {
bring up R_mC
7 v" a0 Y1 D4 D/ @% Z8 \, l( H end
$ k) ]% q$ g4 m3 K n lend
$ O9 T) E6 U5 B& K$ f* x----------------------------------------! N) x. K. }* \' _7 w
9 m& W- i# c8 h2 A4 `# a
Exercise 5.9
6 u! [* U6 n- x R% `# }0 z
, |% C p' P3 X0 y8 f
G2 |7 [+ W* y% S; ~Create a new model to simulate the following system:5 U4 N- d+ Y/ g; K" L
Loads are created with an interarrival time that is exponentially ) Q( W$ H- P; P% |! D8 U
distributed with a mean of 20 minutes. Loads wait in an infinite-
. f4 J$ [0 L1 f# m, V' Bcapacity queue to be processed by one of three single-capacity,
) C3 t$ J( D& Larrayed machines. Each machine has its own single-capacity queue
. g& B+ `4 b& E4 \4 H( [) T( ]where loads are processed. Waiting loads move into one of the three ) m3 J; \8 L7 g8 o
queues in round-robin order. Each machine has a normally
, }9 V1 t4 P: udistributed processing time with a mean of 48 minutes and a standard
: g: U2 K( Z& M6 ?/ Qdeviation of 5 minutes.
, \! U! |7 i6 F+ aThe three machines were purchased at different times and have ; B% u, a8 u/ s6 q+ n7 i
different failure rates. The failure and repair times are exponentially
8 P9 G( t& o" P3 O0 {distributed with means as shown in the following table: ) T8 x% e, T6 ~9 a2 |) t% s6 Y
Note The solution for this assignment is required to complete . e" i! T! w b+ ]+ x! [1 z
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
# a3 K" o. b& ^- B7 z' }3 tyour model.
7 c) o. r3 U) F' o' ^! q7 |1 Z+ C: }6 q
5 c" J, f |4 A0 o T& v" iMachineMean time to failMean time to repair7 [) ?% w5 u" r( @3 k8 U+ Z
A110 minutes 5 minutes
2 F" [' h }& p0 e1 S$ \4 SB 170 minutes 10 minutes! N: u( T4 w% i- _/ q
C230 minutes 10 minutes
. T1 x4 @& F7 C! [# B* H2 }
7 v" E( _7 p9 @% IThe machines also must be cleaned according to the following 0 b b2 S+ _! J! S b0 G* S* o
schedule. All times are constant: 1 t+ Q2 K0 _# v/ Y! H$ V
9 }# `! A" X) B+ ]
MachineTime between cleanings Time to clean3 ~( l/ |% |7 L/ _- x! b/ z
A90 minutes 5 minutes, L: p% @- P' C! [: l
B 90 minutes 5 minutes
2 q; N4 m1 f$ NC90 minutes 10 minutes0 _, r! }* d! b3 e
- u$ N7 @, T, P5 x7 N/ zPlace the graphics for the queues and the resources.
/ F& {5 I( v) U& H, u) vRun the simulation for 100 days.4 e+ H; Y4 D/ h( ?; P4 C8 Q
Define all failure and cleaning times using logic (rather than resource
3 w, ~9 J8 p! e' b% w$ ?: C! ]9 ?3 Wcycles). Answer the following questions:9 b* c$ U+ ?9 t% Q/ L6 @
a.What was the average number of loads in the waiting queue?
) B4 o7 `& R9 u. r4 N, y& Mb.What were the current and average number of loads in Space?
- P# L& j r8 ~1 t0 QHow do you explain these values? & X; K- C- T2 O. v/ i; t. x8 K; `
|