本帖最后由 GJM 于 2009-12-5 21:43 编辑 ( u1 Z* \" j) ]( Z F* i
' E' f) N8 C" R. ^底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去6 h$ L9 S& T6 W: ?8 R7 ?
{$ [5 _( q$ I3 @- X
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!
" _- u3 g1 S; m1 R
8 a4 j6 E' G6 k2 O T: c--------------------------------------------
, W) E) c9 u( X8 Gbegin P_something arriving! v! U* a( R) V o, [, x* k
move into Q_wait
" y: h& }' \& v, ~/ s4 y/ M9 N move into nextof(Q_mA,Q_mB,Q_mC)( Q" Q0 C0 I- `, e
use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
/ k- C. N' d$ ]& b$ F) p+ v# q send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)/ J' e! E" Y7 t) S. l
send to die
! c' K+ H* i6 t9 M3 Zend5 k1 P; c: k% } G( ^
0 c8 R& d& Y4 k9 g7 X6 kbegin P_mA_down arriving
9 }+ H# O2 [7 T; L M$ C5 x while 1=1 do 7 Y2 j* H0 p; S- b* f6 ]% V% g: ~
begin
: M+ |1 z; U) a* p wait for e 110 min
7 n# ^! m4 q% l; e" Y take down R_mA
6 y8 A; @3 b# ]- M; \ wait for e 5 min
: w* L% \& F) T8 N R7 T bring up R_mA3 W. b) Z6 v/ Y* }7 _" H& m
end. c4 N. Z( L/ B
end
1 i0 Q' C# @3 W
3 i) y. @8 J$ [7 G6 m! v! Gbegin P_mB_down arriving0 q8 B7 {9 r0 C$ Y. r
while 1=1 do2 _. Q3 k: z4 J1 \% X C
begin$ ]& C" ^4 L0 v3 P' \! {- r
wait for e 170 min
3 i! [ y$ B4 Z) a! d# _ take down R_mB
2 a+ V7 o9 o8 B* q+ C wait for e 10 min8 g; `9 ~/ v2 t
bring up R_mB
- V$ q& G8 q6 R4 r end
% g* C z5 _: H% Send0 | O/ H" V0 e6 B* t* G6 o, z
: `: V" B9 c9 E3 P) }4 [2 i) }6 `begin P_mC_down arriving
6 l2 b4 @1 R+ W" I9 u& O while 1=1 do
: q8 b" h9 F0 E3 R* O3 w begin
5 [) \, B/ W( S# Y! k" q wait for e 230 min
# @( S: E$ g' Q! F: X2 R take down R_mC- n! e2 }. r# Z5 p
wait for e 10 min
: O& H* g& Q% f; E3 M: o/ L+ c bring up R_mC- h0 [' o( u" }+ `5 p+ }3 `( A) K
end
; h5 k$ V4 V/ l# y. @6 qend
0 D9 B, L9 I/ z7 A& y
+ C' i: c0 c/ G) e5 F6 E' P9 ~" rbegin P_mA_clean arriving
4 @7 k: V0 M) A$ P- r while 1=1 do' z7 c N$ Z1 X
begin
/ \1 |& o& c: z, T' @& w4 S wait for 90 min1 C+ G% j1 V A4 t$ `% M
take down R_mA
# l0 g: l$ g% O C/ t5 v& p& M wait for 5 min
. C! X7 r* j% O8 i/ L) B/ T bring up R_mA
( m; {6 r$ i3 R- W* { end
- h% ` d. i- @* f0 kend
: b( n- Z+ k1 Z8 L2 }1 D . j! r0 K) M+ `1 F$ v4 o* C- X) n
begin P_mB_clean arriving: e) w4 M& J5 Y: _0 V0 ]6 D
while 1=1 do2 _ l& w( e/ r1 J, A- F9 |
begin. p" X+ @4 s0 P2 h( I/ t% M; R
wait for 90 min5 S2 L$ ?1 F8 i* o9 r' `; U4 v
take down R_mB
, Q+ q! g. U4 A- G wait for 5 min' w' _% E7 `0 Z$ d4 ]0 V
bring up R_mB; I( y2 Z7 p$ ^" f8 b4 s, z# x
end ^& m1 c1 D# S' u. P3 K; N
end
) ]* h3 q1 m" f4 V' t' ~
# _8 @: {6 N( m/ a* v. P5 sbegin P_mC_clean arriving
: G( N% Y: y8 P4 A4 b while 1=1 do
0 O4 {* z5 ^8 Y2 w9 T/ ^ begin
4 q. P9 I0 n9 A* S& | wait for 90 min4 N; x0 y$ a! K: z) z
take down R_mC
}8 z. f8 m" T" Y% a wait for 10 min
$ X: f" ]. X( `& G" O bring up R_mC0 C4 }# G. ?3 g: ]7 m) k
end( g# P% y: D6 U! L
end3 x+ ?/ @5 u% J; }9 x' N
----------------------------------------
/ h8 ?$ I4 t& ]4 m% Z b% @ . d/ T {0 [: j) v7 r/ L
Exercise 5.9# ]. ^" ?- q1 D6 n
1 H1 U, w0 o) T! N6 `; e1 u! h( W
Create a new model to simulate the following system:
$ g/ p# @* W$ G1 ?5 _: T/ lLoads are created with an interarrival time that is exponentially + u3 g! ~) s) B# J
distributed with a mean of 20 minutes. Loads wait in an infinite-& f3 k' T; ?: M1 e. n8 D. ~' H9 W
capacity queue to be processed by one of three single-capacity,
/ P1 X# X* Z! qarrayed machines. Each machine has its own single-capacity queue / \7 i; E4 c V B8 _1 G$ z1 k
where loads are processed. Waiting loads move into one of the three
( W( A& f. x: P% Vqueues in round-robin order. Each machine has a normally H: D# r8 x9 B( r% Z
distributed processing time with a mean of 48 minutes and a standard
+ W3 y& ` t F* m# b8 l3 ddeviation of 5 minutes.
# r5 U! K) W% i3 R. J& YThe three machines were purchased at different times and have 6 t4 y) X4 x1 H- M% g# B$ q
different failure rates. The failure and repair times are exponentially
, {! G8 c' P, Q7 Vdistributed with means as shown in the following table:
9 a# ~2 e% O) O( h3 g9 aNote The solution for this assignment is required to complete : f; h& B$ W2 L! H- G$ Q+ \, F0 V
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of
1 {+ s" Q7 h9 E n5 pyour model. 7 c. m0 P: u: ]9 g
+ a. x5 @& d6 i' r: i, {" e5 p
MachineMean time to failMean time to repair O+ o7 C, Z* X1 m
A110 minutes 5 minutes
+ L W" e R' |6 P7 e6 |B 170 minutes 10 minutes
: f3 ]! E/ s9 @ s1 n# a9 \. DC230 minutes 10 minutes
( k# Z- A D' V) @8 `- s
1 D- {5 T2 u& RThe machines also must be cleaned according to the following . ^$ K9 b+ ?" Z6 y% K
schedule. All times are constant: & O& l) m0 e! ~0 R; d \
9 m1 M- V2 g; u: G0 K+ xMachineTime between cleanings Time to clean/ w! B& l! H& k2 K6 ^
A90 minutes 5 minutes
2 E% |( ?& Z* Q# K& \B 90 minutes 5 minutes
/ i# ]; o' C4 w9 v! b8 \C90 minutes 10 minutes% W' y" ]( n# t6 P
1 a6 F* _) Q5 I- Z9 |
Place the graphics for the queues and the resources. 9 B$ q& [# h; d( w0 D
Run the simulation for 100 days.
0 T N2 r8 p7 F$ O6 cDefine all failure and cleaning times using logic (rather than resource
5 d8 T# v9 K& Z9 y- V) a& U% Xcycles). Answer the following questions:
- T& V: f$ _* ~% W- G3 j0 aa.What was the average number of loads in the waiting queue?
. M; n5 g5 T' ]b.What were the current and average number of loads in Space? " u8 Y3 e6 J" U7 ~) s% f
How do you explain these values?
; s- Z+ o0 P. m |