本帖最后由 GJM 于 2009-12-5 21:43 编辑
, v% J" v0 D/ V# L! b. g& c' l# T
底下是小弟做AutoMOD里面PDF练习的(Exercise 5.9)逻辑文件但问题是,程序只Run到Machine A和Machine B就没继续下去, `' F t5 q! D3 \; \
* Z9 ] m( q- m! Y8 M+ n) ]3 f
不知道是哪里出错,另外这题和Exercise7.1的题型类似,请问若要符合Exercise7.1的题意又该如何修改呢?请各位先进指导,谢谢!2 I9 E) E) L/ y- C+ a- ~
8 {4 F' \3 U4 f8 Z C* y# q; p
--------------------------------------------8 @" o9 a# p, K+ V
begin P_something arriving
0 S' M* W) ~8 O3 A' ^/ G. M# V move into Q_wait
: n' H$ H. R# p Z" j F move into nextof(Q_mA,Q_mB,Q_mC)
/ F+ l- B' n2 A use nextof(R_mA,R_mB,R_mC) for normal 48, 5 min
8 C" Y' K1 I! d- |0 [ send to nextof(P_mA_down,P_mB_down,P_mC_down,P_mA_clean,P_mB_clean,P_mC_clean)
+ A; T0 l h2 r send to die- D, ?/ B: _$ F, x. v
end& }8 B3 w( V$ S3 z9 c8 r
8 G9 z2 w) O. g6 T' Nbegin P_mA_down arriving! N) A! \2 S+ n7 j. G
while 1=1 do
* e; V; F: J& w6 N3 J- |, r begin, P0 }0 S/ o/ P6 X
wait for e 110 min
$ T8 W" Y% `; Y. ~% d take down R_mA
4 P+ y# G3 i; c+ S wait for e 5 min
! N* k2 z+ K$ Y+ w; C- j( |+ D4 I bring up R_mA" A( F5 H& [6 g- N4 i$ \ d& ]
end
0 {* J; N5 `; h/ i& x" m Cend7 s; D a1 E: U) _
1 O# N5 z2 @$ z
begin P_mB_down arriving
7 C# V& q0 G# @ while 1=1 do7 \* _0 O& J/ a% x* }1 G
begin# q, @; c" \: t& |+ G- }1 X1 o
wait for e 170 min
0 Y1 m9 ?+ g6 ]+ P9 V take down R_mB# z" m! P! ~3 s8 j
wait for e 10 min
8 L6 V8 u! ?2 b# B bring up R_mB3 W; |( F5 {) ]2 j
end) f. L: ?0 ^7 L" m; D+ z1 [
end3 \& }: A; R3 h' V2 @: ^" {
" `9 q) ]# {% T6 |
begin P_mC_down arriving" c' X7 `; b2 Z' }3 L; m. l
while 1=1 do
% c" d4 e* y' U% f" U+ D begin" H: g3 m+ [! r8 y; c3 L9 g8 g+ q2 L
wait for e 230 min
& Y6 w; A& Q+ O$ K! d$ c5 | take down R_mC
0 P" i3 g6 N, L' s5 | wait for e 10 min- E+ L& S, r1 B: E4 ~
bring up R_mC
& @5 x b) B* S1 J+ W end
+ F% D- U, ^6 @4 }4 X- P, X$ }/ wend
" Y, {& x( h" P! q! B- v6 _ # I+ k5 x& H) Q: r6 |+ A
begin P_mA_clean arriving0 S/ _* I5 a' @7 ]' }1 M* Q, ^5 ]
while 1=1 do
S7 e' N7 }% y begin9 m) \1 x* O( E5 D
wait for 90 min2 E& N% L0 [9 I
take down R_mA* M; l. x6 r! |1 a" W
wait for 5 min
" v4 W2 s, |3 G9 X) t. v bring up R_mA
+ f2 t) }# z) t( k- D end$ m, M% `4 C" v3 `- {* Y
end
" _& Q* l; O4 V, u' k9 p: j
1 f1 r* c/ [7 C0 S3 q9 G9 L4 u J, Tbegin P_mB_clean arriving
$ g# h' n3 w/ q, p# n0 T while 1=1 do
& |# z/ Q) ]+ K7 N; r4 l! \* J begin _' [: L8 Z5 m# [9 T) x
wait for 90 min, M7 z2 u' ]( S! S& l6 I5 ^
take down R_mB: F8 u+ v/ [5 L7 C0 i% u
wait for 5 min! D$ Y9 d& @& ~8 x [0 B* H
bring up R_mB* }+ X3 [+ B3 k0 o( n
end
* J" C$ r# }' \end: V, R; `# w. ~" d
3 h/ E% {5 }) {* ]
begin P_mC_clean arriving* t2 P$ Z& C6 e, H$ t c* O
while 1=1 do/ X2 p- d; C7 B# G7 I$ s. i/ q) C, j: ?
begin
! k' E* D8 q7 o& ?5 n2 h wait for 90 min g) E4 }# }7 ^5 O+ q X
take down R_mC% q8 w \- A. W7 y
wait for 10 min3 f4 F( d8 E. _
bring up R_mC& R l, X6 W+ t! D
end- |1 y" e6 ?2 L, ~+ y5 `
end
: p, i6 U1 i6 ~( M; C----------------------------------------) ]9 e) t; X2 b7 O3 Z' B
5 D% r, _* w9 t; {* I) pExercise 5.9
) y! X2 [$ R2 ?8 U4 x- M0 x$ j1 B; }, ]4 x
; A3 r l' q V8 P* r
Create a new model to simulate the following system:
! ~$ Q9 n5 `, r4 R2 _5 R1 ]Loads are created with an interarrival time that is exponentially
( o# ?' ]& a! @$ h% rdistributed with a mean of 20 minutes. Loads wait in an infinite-
6 q: X$ [5 `8 Q# S# N) N; a! R5 Z5 V U. t1 ncapacity queue to be processed by one of three single-capacity,
( ^: I7 C# Z+ Q, iarrayed machines. Each machine has its own single-capacity queue * u3 `+ U3 }* k& b* `1 K+ Q
where loads are processed. Waiting loads move into one of the three ' M2 m( w( Y9 Y; g# C4 U2 V0 t
queues in round-robin order. Each machine has a normally $ E& `; o: i$ b
distributed processing time with a mean of 48 minutes and a standard
3 }5 W0 N; z3 ]" K2 \deviation of 5 minutes.3 a8 p2 Q9 [4 y* k1 `0 ]; f4 \
The three machines were purchased at different times and have ! z5 r$ s: f7 Q" j
different failure rates. The failure and repair times are exponentially
+ `9 E0 C+ y0 L; q! R- H _distributed with means as shown in the following table: / e2 h! }5 U, ?" m" v
Note The solution for this assignment is required to complete ( {9 A9 F" r* E1 o
exercise 7.1 (see “Exercise 7.1” on page263); be sure to save a copy of " B2 ?/ }! \: L1 J: l3 R. v! j
your model. % p6 ~) g0 Q8 m- j6 U: m
" a+ p& M* r0 L4 u( sMachineMean time to failMean time to repair4 o2 }& \ F) r! \$ l
A110 minutes 5 minutes
( v+ y4 L) c( J" {B 170 minutes 10 minutes3 z( C2 W3 Z, T! f: T
C230 minutes 10 minutes
! }5 w6 `9 j9 K2 [0 y2 C; _, S1 ]. C3 e8 ^
The machines also must be cleaned according to the following
3 \- i c4 _: w! Kschedule. All times are constant:
1 A. A2 L _9 K) F2 |$ y3 v6 m
! h6 Y- T$ c3 J) x6 j& Q' H# v- H t) K" gMachineTime between cleanings Time to clean: s3 s7 X# ^! e" @- F2 c, _
A90 minutes 5 minutes! ]5 X d' o: `) ~0 v/ e* W
B 90 minutes 5 minutes
% \" G& u3 S. }: `C90 minutes 10 minutes$ b% ~8 z( \% q
% Y0 \4 ?8 f1 ^1 y& C
Place the graphics for the queues and the resources.
* R( J9 U/ A2 d6 V H1 T& `Run the simulation for 100 days., z( q- w7 e+ i- |. e2 d
Define all failure and cleaning times using logic (rather than resource
4 d9 z' S& A/ k9 X6 l7 m4 p* |' mcycles). Answer the following questions:6 a/ f0 W1 G; D5 \$ J- B6 t
a.What was the average number of loads in the waiting queue? t$ o- e7 l' i- S4 r
b.What were the current and average number of loads in Space?
) T9 Z" \0 w/ c! W3 a* C6 P8 dHow do you explain these values? ; _9 e8 b$ A& I i
|