请问 我现在希望设计海龟死后他的财产可以以一定的比例留给后代。这些海龟如果代表的是穷人则它死后(年龄大预期值)会生出3个孩子,其生前的财产的90%均分给其孩子。若海龟是富裕的,其死后有随机1~2个孩子,财产已70%均分。请问大家如果加到下述程序中怎么实现" S) h( a* ]' r' P! a* F
globals9 T' H5 f- E; V: [
[
# g/ B* S/ i/ j( ` max-grain
2 Y, Y" g# b- e. L+ a- A3 A( v1 _4 k$ h; r3 f/ ]
]
4 c0 T! N) z2 z+ g1 k) \. v: h% L
patches-own6 d. d9 _& }7 A6 O# N" e6 P) |2 b1 H
[2 A2 P6 H8 L/ E/ k7 a7 B* e: m
grain-here 3 H' i8 Z! Q( c; M ]
max-grain-here
4 Q' i* c5 @$ p3 A* ?! t]+ {: {& e; E) X4 U
) D0 R& s! @7 L* v
turtles-own
) k: v8 O- x& K% E; V[( F7 R1 j4 k+ p2 j+ R( d
age
4 X: Q4 j+ ?* O/ q% A' R' u# E4 f7 Q wealth
+ g( T: o7 _4 x# [ life-expectancy
' \* T) d9 R; E- ~ @ metabolism 6 j9 i! B) V7 Q( D: a7 f9 ^" D) i
vision7 w# V& r& k. P; b
inherited
1 T c* ^6 a$ @- S( |* S]( [" t7 G- U* F
3 [+ k; R s- i( w2 T
1 {9 W9 v' z1 X: i% Ato setup4 j# n1 X/ D2 |* z3 m
ca
9 |8 o2 c* L$ S! _: Q2 i set max-grain 50
/ ~; b" K: }- N0 i1 w setup-patches
; t/ @+ S( I* e7 C6 | setup-turtles
* x, X0 L; Y# @1 v/ ] setup-plots4 d, h& P) J+ p p# e
update-plots6 X" ?& s: S$ ^; z! ?& M
end
5 J/ o ~: @/ [to setup-patches
/ S# f6 A9 q( x" M1 H* S ask patches* s) S" v) C5 ~" d- D6 f
[ set max-grain-here 0
% ~3 g, i7 M0 P9 b6 w+ Q if (random-float 100.0) <= percent-best-land4 \. Y8 y* k# y* T+ Y1 |, b0 D
[ set max-grain-here max-grain/ {% c) a" \& H' Y5 E$ f( _
set grain-here max-grain-here ] ]7 |1 s, z% ^9 k2 _8 W8 m4 U+ x
repeat 5
% w% h6 n: B. ^4 o6 G [ ask patches with [max-grain-here != 0]' B4 M- S& y. w8 }1 ?9 B* M1 ]
[ set grain-here max-grain-here ]
a8 I( o8 z8 d1 i diffuse grain-here 0.5 ]
! s" P: j8 Q) |3 e4 `. ~ repeat 10
& i' X# I7 W& T. t [ diffuse grain-here 0.5]
- L# Q0 U$ V7 H- S$ l1 S' l ask patches
3 q6 f, O1 n0 w, }, c [ set grain-here floor grain-here : j! t- o/ J7 R: d1 B
set max-grain-here grain-here ; r* d! j' x2 l: o- J
recolor-patch ]
4 o7 d v' k% P/ I3 U/ [end6 J' k) Z9 R3 j$ J% @/ v3 n# S
to recolor-patch
1 Z% a/ r# F. E+ [* g set pcolor scale-color sky grain-here 0 max-grain, x! s: L( o# U! X, @ A
end W" j+ ]3 e4 `
to setup-turtles
3 N/ K; n8 x2 L& b) S, _ set-default-shape turtles "person"
) F( X; ]5 ?2 C1 U crt num-people- b4 G1 |; X0 h
[ move-to one-of patches
& H0 c4 L; y) w; W, R9 W& Q set size 1.5 + Z$ w# [ U' r
set-initial-turtle-vars-age
8 m: g) z- k1 E D% B) `& e set-initial-turtle-vars-wealth
3 g) s* P* ]* I$ [# J1 [4 p% l/ X set age random life-expectancy ]
6 o9 g# {7 l! C: |7 i ^+ @ recolor-turtles
1 ]4 G0 y8 L- ]/ nend
1 {3 l' u& B1 }1 s \/ \6 h' m) j- v7 l A+ g
to set-initial-turtle-vars-age
" e; I& C8 z9 `4 c1 l let max-wealth max [wealth] of turtles% y. @5 u/ B+ |9 C' p
2 q5 B& Y% z' g7 J7 U7 g* p, Z
ifelse (wealth <= max-wealth / 3)( Z# s! x; |5 H3 C {
[ set color red
, A4 ]9 S4 r- d" Z1 Z8 F# r set age 04 u- f# x1 N1 f8 s# u8 W3 b1 V
face one-of neighbors4
( v: ~& o6 _; ?9 C$ B! W set life-expectancy life-expectancy-min +
5 U0 H, t3 E X+ [% F j; I random life-expectancy-max
/ K" n; ]% W" |& k4 F# m' ~7 s# s; j set metabolism random 1 + metabolism-low
- L) N$ s& `5 p$ t; b set wealth metabolism + random 308 o' N: x, k3 A: }
set vision 1 + random max-vision/ h' _. X9 H8 Z+ a
set wealth wealth + Wealth-inherited-low ]
0 U5 }( Y0 b6 r- r1 x7 i& Z [ ifelse (wealth <= (max-wealth * 2 / 3))/ r$ h0 v. o# B8 b$ Y
[ set color yellow ; t- ] _3 ?& w$ k' Q8 d1 w$ e
set age 0) s) S1 J/ o; ]% f
face one-of neighbors4
# p" ?( i4 T: X/ D set life-expectancy life-expectancy-min +% V* k7 ]' C" {" D" F
random life-expectancy-max + 17 ? ^# w8 H0 F. U3 G: W7 @+ ^8 l
set metabolism 1 + random metabolism-mid
; A2 ~4 ^1 M+ v, N' d set wealth metabolism + random 30* w, o1 c [' s
set vision 3 + random max-vision6 ?* n: j6 I6 j* O5 o% p
set wealth wealth + Wealth-inherited-mid]
" P6 `% _8 Y( R1 \# c6 {1 A2 y3 y [ set color green : ]% c1 M) i4 K1 B5 `3 h8 C
set age 09 M" R% D! V2 w, m
face one-of neighbors4
3 F. T5 n: E& C2 [4 e set life-expectancy life-expectancy-min +
& Q4 c4 t, R9 n random life-expectancy-max + 2
0 p; M! n2 C6 N, Y; z5 [ set metabolism 2 + random metabolism-up
+ u: [' W! [8 C0 F l! p: J* k( w( w: X set wealth metabolism + random 30# X; E; h7 X2 e1 ` @/ Y) H
set vision 3 + random max-vision
+ f/ A# M. q4 u set wealth wealth + Wealth-inherited-up ] ] - I: \+ ~7 E! j* }& u
, V. K, m) M" v$ e" J* Hend
A1 V5 \, L Pto set-initial-turtle-vars-wealth
5 J* I$ f$ M+ L: X" n+ p5 G- Q let max-wealth max [wealth] of turtles$ e4 y0 { |! c$ K
set age 0( f( M! B/ H% H1 d$ o4 B1 {
face one-of neighbors4 2 R$ q$ C( c. @$ l. f) ?' ?
set life-expectancy life-expectancy-min +2 {6 |4 Q( @! ~+ b
random life-expectancy-max ' s6 ]! t# e$ P: l# A! `, J3 J0 U
set metabolism 1 + random metabolism-up/ K: ~' k' j( ]% b1 _. g
set wealth metabolism + random 30+ v# `( ~! K3 R' I# q
set vision 1 + random max-vision ' f' M$ K! s ?; }) F& I
end3 X) ]2 J4 o0 Z: ?+ g1 g
to redistribution6 z( o3 W& j; C' B) v: v! n
let max-wealth max [wealth] of turtles
8 ^& V O. u6 k4 F( S% N; R! j+ mlet min-wealth min [wealth] of turtles6 i3 \) Z. T, J" Q) f J, c
if (wealth <= max-wealth / 3)
2 z1 o/ O% H7 p, U. d" a [set wealth wealth + Low-income-protection ]% A' G: ]9 @6 Y' G8 b3 P
end1 r, R/ R% o- }! n% K$ J
) F! ?7 {$ {3 d/ s5 I! \7 o! K
to recolor-turtles
& v9 _9 O4 i; I9 c' l* B1 O let max-wealth max [wealth] of turtles
# W+ t9 |! J$ A f; s' |0 K- z ask turtles% ~; Z( A" h2 l; M9 ?
[ ifelse (wealth <= max-wealth / 3)
7 m3 G( `, v& y% M [ set color red ]! P# G; ~; ~% i
[ ifelse (wealth <= (max-wealth * 2 / 3)), o) m4 i; ~8 Q: _& X& Y& `6 C, \
[ set color yellow ]
2 d9 t, `# c, S2 S, E3 ^7 t4 k# @ [ set color green ] ] ]1 k& Y& c; {' f( c' {7 I
ask turtles [ifelse show-wealth?
! O. e, Q7 [& ~6 T# m" T2 C [ set label wealth ]
: q8 `# h' Q& x/ C% d3 k( f [ set label "" ]]
5 P4 @) O- Y2 P3 }$ \$ O! b: N* Qend
- I: o& {& _4 v% T. O, _" d* N3 M4 u1 K, V6 ]# ?# J
to go5 f" `. S9 l" E+ H- |
ask turtles9 G* u5 g5 I% X1 g2 y: |$ s' e5 z( h
[ turn-towards-grain ]
2 E9 V4 K& e9 R harvest
/ L# z( X% \/ B. P) c8 N ask turtles
1 Q8 Y; D i. O [ move-eat-age-die ]
& D% C% T) F2 l8 ?- b; v5 d; A recolor-turtles- S- p' x8 D, l- }
if ticks mod grain-growth-interval = 0
9 z2 l: ^6 r! ]$ S [ ask patches [ grow-grain ] ]
% G+ |: D& m4 |5 T) R/ O
. n. d* s& P( S& ]* H if ticks mod 11 = 0
3 Z* s2 K4 n3 U6 r! N [ask turtles
' } g4 ~0 |. R* E) Y [ redistribution ]]
8 m* W! G1 c6 a5 R5 T3 v, t; `8 ^0 h if ticks mod 5 = 0
, K3 w2 O7 J/ e7 \. ` [ask turtles
2 [5 w& N. l( U, p: O- A8 i [ visions ]]
+ o0 n- ^( o& l; Y; P tick3 V8 X3 M/ R: _/ h) @! j
update-plots& o( ` R, t! b8 W4 r; ~
end$ I2 @3 I* r" l6 U2 i7 F; W; t9 d8 p
to visions
2 I u3 P: H) x set vision vision + 1 2 f# j6 z/ I! |2 ^" Y. i
end
9 e# `6 o' v- x/ i: ?8 G" G; O, m. J5 c
# }* F I, B# e8 c8 `% y
7 H; D/ o! y; Q1 O! Q4 a% h0 j
to turn-towards-grain ) N2 Y7 V# C) I: i9 S2 \7 P2 T \
set heading 0
; i* r% s. f% A. }% @ let best-direction 0
9 T# f2 |7 d2 t( G& D& q; H let best-amount grain-ahead+ j/ G. r* v/ ^5 Z- n
set heading 90
+ ^; `$ p% x0 I' w if (grain-ahead > best-amount)# q! h( K6 Y% H s) M
[ set best-direction 901 e4 ?1 o% B2 q2 _7 g7 U
set best-amount grain-ahead ]
! |! l! q+ S) A7 I6 y1 | set heading 180- G; ^% R% W; ^# x
if (grain-ahead > best-amount)
+ _2 R R; W8 ~3 M [ set best-direction 180
/ |( f# @7 |, |6 A# D6 B set best-amount grain-ahead ]6 Z) ?& l' U) Q0 H* m
set heading 270' F* ~4 y2 x* a
if (grain-ahead > best-amount)
8 X* L; O0 @) B; G1 v* v% ?/ o [ set best-direction 270) q# z' x* E" o, t4 x! o! B
set best-amount grain-ahead ]4 v5 x9 s- l2 \5 P0 w N1 N, [# z
set heading best-direction* _' J' _6 Y: q
end. e+ @5 e4 D' I" }6 l
* J2 K, O/ |0 A. F$ E7 V$ z1 ^' R
) q, X) p$ z& B3 \+ t6 uto-report grain-ahead
0 d; J f$ q0 s let total 0
! H9 U1 X z7 q9 a9 o" O let how-far 1. n, F" i8 _/ u$ G2 u( l" T
repeat vision# d3 y4 Y* J) X- p; B/ g; ~- M' w
[ set total total + [grain-here] of patch-ahead how-far/ @! b7 W* M6 q3 }
set how-far how-far + 1 ]8 z9 _+ T6 V4 l* n' [% C
report total
7 C0 X: U6 x" L; b/ Rend/ u9 y% o2 z( p9 @; Q
; a& s, X9 r2 M) f! e- q3 Z5 C/ rto grow-grain
7 J7 g8 M5 T* \7 D4 m. t F7 F if (grain-here < max-grain-here)% R; \# i& l: R3 _0 E t$ v: p
[ set grain-here grain-here + num-grain-grown( q* `2 ^) V: f8 p; i0 p% l( q
if (grain-here > max-grain-here) 9 w+ o8 l% U6 z$ E4 r- r. ?
[ set grain-here max-grain-here ]7 I$ ?( H9 R& b
recolor-patch ], ~5 H- r: z# K' t0 x W/ @
end; L$ ?% U7 H& P* P9 T
to harvest
$ [, |5 Z( b" J3 H' _5 m7 U+ M ask turtles8 X; x2 [7 Q( k3 U: ^' H
[ set wealth floor (wealth + (grain-here / (count turtles-here))) ]
/ e0 N7 V; r0 B9 I ask turtles \, X2 R: _. ?% }0 N
[ set grain-here 0
0 a+ y7 c# u) c recolor-patch ]
' Y3 N% x; s/ r, h 6 \4 M1 g( c5 T
end
$ N2 W' T+ M L# P) D' D; V
. [/ o% |- C' y, w2 {1 Fto move-eat-age-die
" Y8 Z; I ~7 H& R fd 1' g7 `! m) M7 q o/ U3 Q
set wealth (wealth - metabolism)) }8 ], C7 g* D5 R+ l9 n
set age (age + 1)% D; N: \2 ]* _& o/ X+ i
if (age >= life-expectancy)
1 @( _: C3 J1 G [ set-initial-turtle-vars-age ]* i; z1 [ Q: Q2 `/ H5 R1 V* ]
if (wealth < 0)
! ~* L. I- w/ x2 w% c3 d% { [ set-initial-turtle-vars-wealth ]
7 V3 ], n0 V& {( ?
: \0 i( N- _2 g, F+ P# nend
5 m2 j' j' l7 r2 U6 c
( M" S) x( {6 t) _3 J3 r. c9 R; ~# S2 X' T V
to setup-plots+ ~( N: l- t8 ^: O
set-current-plot "Class Plot"7 N U$ j' Y4 |6 |+ M9 l$ s
set-plot-y-range 0 num-people% G) Z0 l) t+ U4 J4 V8 p
set-current-plot "Class Histogram"' v# N* k _7 t3 I" l+ f% H- t
set-plot-y-range 0 num-people! y) d8 R& {5 l$ p! `5 t7 G2 g
end: A2 i0 j# X& J! z
" W; n9 ]( }* q8 C' C$ lto update-plots
" N8 u$ ?: x0 u7 d4 q update-class-plot
3 t4 @5 o' |! N0 |$ E2 |7 ^4 E update-class-histogram
# P0 [1 U& K5 ^/ [, J' l6 } update-lorenz-and-gini-plots5 w& h. _6 \4 q8 U# `, v ` w \
end& p. V. }! H! f L2 _
! ]9 \8 I: i: a6 ?, Fto update-class-plot1 G( I8 [) b r3 M' n3 G
set-current-plot "Class Plot"# K9 Y( H) Q4 y& M- v
set-current-plot-pen "low"
5 i1 @: \, D! q; E plot count turtles with [color = red]
: g9 `# I" b) J6 r* M1 w O set-current-plot-pen "mid"
% X/ L. M! K- e9 u& D0 } plot count turtles with [color = yellow]
8 ]$ L4 y5 N" B* A set-current-plot-pen "up"; O) e1 u! ^! j; a! b1 \5 m0 Z
plot count turtles with [color = green]
/ o8 D n3 a }# h, M1 Kend) E7 o8 Z: v$ |1 p* R7 r) g
( T, E1 p7 i5 E# X+ y' l, `
to update-class-histogram
( ]3 V! O! h% a9 c( K7 } set-current-plot "Class Histogram"
9 a5 _' v/ o4 k! f8 o plot-pen-reset
! [# t& ^9 o$ r& ?3 c set-plot-pen-color red
: _$ s/ w2 W, k/ { plot count turtles with [color = red]
8 x: r6 i, P, @- i set-plot-pen-color yellow
* c0 T: N3 t Z plot count turtles with [color = yellow]7 P. p1 g7 ]% r+ x
set-plot-pen-color green
) `0 g0 h3 r, R* z8 ^1 u h2 c) h plot count turtles with [color = green]
( ]. o! R; D# ?7 z. _7 D5 D2 u2 n7 iend
2 [! D/ y: ?- ~9 Y, Dto update-lorenz-and-gini-plots1 n) n% r2 P! J, y$ N8 I8 ~
set-current-plot "Lorenz Curve"! [6 z6 d) f* `4 g2 q: b2 _' X7 r7 [
clear-plot m+ a7 G( X( o' Q
$ L( O( k8 |- J0 X- }
set-current-plot-pen "equal"
# s! k% E, ]0 Z$ G- }( L$ J- u5 ^ plot 0
! v' V% `& E7 d9 K v: \4 y6 k plot 100
" Z- g& Y% m9 s1 t4 z3 z+ v: [' w2 C" U- H
set-current-plot-pen "lorenz"
" H& C8 w0 h- S$ ~3 S0 _ set-plot-pen-interval 100 / num-people/ T( z5 ~% v1 U
plot 02 h& ^+ O5 K2 d) h9 a8 ^
1 [4 q* C6 \- c1 K6 r- y! u
let sorted-wealths sort [wealth] of turtles1 ]* N ]2 z2 u5 l4 g
let total-wealth sum sorted-wealths
% m9 C$ Q7 \: U& X let wealth-sum-so-far 0
4 o: f/ i( B. f Q let index 0
" W& ~& M' h5 m let gini-index-reserve 0
9 A1 j: O! f* l8 Y3 @& n8 O, P, {& x
repeat num-people [
- U+ I/ L" g1 W0 j" o set wealth-sum-so-far (wealth-sum-so-far + item index sorted-wealths)
9 m! v0 `; G' I/ A: v9 v) \; U3 M plot (wealth-sum-so-far / total-wealth) * 100* T" D7 a" Q; e* l: m2 D) Y
set index (index + 1)9 w" M, ~1 @3 e7 D# ^
set gini-index-reserve5 t: t* J f2 j$ l0 x" u$ N
gini-index-reserve +
6 o) D" N( l& G (index / num-people) -
4 |. e8 t4 l/ Q- t2 u# l (wealth-sum-so-far / total-wealth) J3 [. u* f; T4 h
]1 a W! F# ?1 ~6 Q
% F9 ~: H$ g- c; L7 Z5 D/ c4 c
set-current-plot "Gini-Index v. Time"
4 K$ a$ r. W- } plot (gini-index-reserve / num-people) / area-of-equality-triangle2 g3 k0 e" B1 u
end! b! o: o4 D. {* P6 H; ^# c
to-report area-of-equality-triangle( E& V* o w/ d% d- z& U% D
report (num-people * (num-people - 1) / 2) / (num-people ^ 2)8 v) C } [% P2 V! C
end |